期刊文献+

一类最优相位协变量子克隆 被引量:2

A class of optimal phase-covariant quantum cloning
下载PDF
导出
摘要 相位协变量子克隆在量子密码术中有重要的应有。利用一般的量子克隆幺正变换形式,得到克隆的保真度。结果表明存在一类最优相位协变量子克隆。对这一类量子克隆的幺正变换,拷贝的保真度最大且相等。基于腔量子电动力学,提出实现这类量子克隆幺正变换的实验方案。 The phase-covariant quantum cloning has an important application in quantum cryptography By exploiting a general unitary transformation, the fidelity of clones is derived. The result shows that there exists a class of optimal phase-covariant quantum cloning. For these explicit transformations of the phase-covariant quantum cloning, the fidelity of clones is maximal and equal. Based on the cavity quantum electrodynamics, a scheme to implement the transformations of quantum cloning is proposed.
出处 《量子电子学报》 CAS CSCD 北大核心 2011年第5期583-587,共5页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金(10704001) 安徽省级高等学校自然科学研究(KJ2010ZD08,KJ2010B172,KJ2010B204) 淮南师范学院博士研究启动资金资助项目
关键词 量子信息 量子克隆 最优相位协变量子克隆 腔量子电动力学 quantum information quantum cloning optimal phase-covariant quantum cloning cavity quantum electrodynamics
  • 相关文献

参考文献17

  • 1Wootters W K, Zurek W H. A single quantum cannot be cloned [J]. Nature (London), 1982, 299: 802-803.
  • 2Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography [J]. Rev. Mod. Phys., 2002, 74: 145-195.
  • 3Buzek V, Hillery M. Quantum copying: Beyond the no-cloning theorem [J]. Phys. Rev. A, 1996, 54: 1844-1852.
  • 4Scarani V, Iblisdir S, Gisin N, et al. Quantum cloning [J]. Rev. Mod. Phys., 2005, 77: 1225-1256.
  • 5Bruβ D, Cinchetti M, D'Ariano G M, et al. Phase-covariant quantum cloning [J]. Phys. Rev. A, 2000, 62: 012302.
  • 6Zhang W H, Wu T, Ye L, et al. Optimal real state cloning in d dimensions [J]. Phys. Rev. A, 2007, 75: 044303.
  • 7Zhang W H, Ye L. Optimal asymmetric phase-covariant and real state cloning in d dimensions [J]. New J. Phys., 2007, 9: 318.
  • 8Bae J, Acin A. Asymptotic quantum cloning is state estimation [J]. Phys. Rev. Lett., 2006, 97: 030402.
  • 9Zhao Z, Zhang A N, Zhou X Q, et al. Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation [J]. Phys. Rev. Lett., 2005, 95: 030502.
  • 10Du J F, Durt T, Zou P, et al. Experimental quantum cloning with prior partial information [J]. Phys. Rev. Lett., 2005, 94: 040505.

同被引文献17

  • 1Wootters W K, Zurek W H. A single quaatum cannot be cloned [J]. Nature (London), 1982, 299: 802.
  • 2Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography [J]. Rev. Mod. Phys., 2002, 74(1): 145-197.
  • 3Buek V, Hillery M. Quantum copying: Beyond the no-cloning theorem [J]. Phys. Rev. A, 1996, 54 (3): 1844-1852.
  • 4Scarani V, Iblisdir S, Gisin N, et al. Quantum cloning [J]. Rev. Mod. Phys., 2005, 77 (4): 1225-1256.
  • 5Werner R F. Optimal cloning of pure states [J]. Phys. Rev. A, 1998, 58 (3): 1827-1832.
  • 6Bruβ D, Cinchetti M, D'Ariano G M, et al. Phase-covariant quantum cloning [J]. Phys. Rev. A, 2000, 62 (1): 012302.
  • 7Fan H, Matsumoto K, Wang X B, et al. Quantum cloning machines for quatorial qubits [J]. Phys. Rev. A, 2001, 65 (1): 012304.
  • 8D'Ariano G M, Macchiavello C. Optimal phase-covarlunt cloiag for qubits and qutrits [J]. Phys 67(4): 042306.
  • 9Buscemi F, D'Ariano G M, Macchiavello C. Economical phase-covariant cloning of qudits [J]. Phys. Rev. A, 2005, 71 (4): 042327.
  • 10Zhang W H, Wu T, Ye L, et al. Optimal real state cloning in d dimensions [J]. Phys. Rev. A, 2007, 75(4): 044303.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部