摘要
针对现有精度测试方法适应性低、收敛速度慢的问题,提出了一种基于连分式逼近的初等函数精度测试方法。通过对最后一位表示的单位(ULP)的误差的分析以及对几种计算函数真值方法的对比,给出了精度测试方法的主要算法实现,并从时间复杂度及收敛阶两个方面进行了理论分析及实验验证。结果表明,该方法在精度测试方面更有效,复杂度更低,收敛速度更快。
Poor adaptability and slow convergence rate are the two main disadvantages of the existing precision test methods.To solve this problem,an elementary functions precision test method based on continued-fraction approximation was proposed by analyzing Unit in the Last Place(ULP) error and comparing several different functions true values calculations.The different calculations were analyzed and tested in the following two ways: time complexity and convergence degree.The experimental results show that the precision test method based on continued-fraction approximation is more effective,less complex and achieves faster convergence.
出处
《计算机应用》
CSCD
北大核心
2011年第10期2600-2602,2605,共4页
journal of Computer Applications
基金
国家863计划项目(2009AA012201)
上海科委重大科技攻关项目(08dz501600)
关键词
精度测试
最后一位表示的单位
牛顿迭代
连分式
收敛阶
precision test
Unit in the Last Place(ULP)
Newton iteration
continued-fraction
convergence degree