期刊文献+

基于连分式逼近的精度测试方法 被引量:1

Precision test method based on continued-fraction approximation
下载PDF
导出
摘要 针对现有精度测试方法适应性低、收敛速度慢的问题,提出了一种基于连分式逼近的初等函数精度测试方法。通过对最后一位表示的单位(ULP)的误差的分析以及对几种计算函数真值方法的对比,给出了精度测试方法的主要算法实现,并从时间复杂度及收敛阶两个方面进行了理论分析及实验验证。结果表明,该方法在精度测试方面更有效,复杂度更低,收敛速度更快。 Poor adaptability and slow convergence rate are the two main disadvantages of the existing precision test methods.To solve this problem,an elementary functions precision test method based on continued-fraction approximation was proposed by analyzing Unit in the Last Place(ULP) error and comparing several different functions true values calculations.The different calculations were analyzed and tested in the following two ways: time complexity and convergence degree.The experimental results show that the precision test method based on continued-fraction approximation is more effective,less complex and achieves faster convergence.
出处 《计算机应用》 CSCD 北大核心 2011年第10期2600-2602,2605,共4页 journal of Computer Applications
基金 国家863计划项目(2009AA012201) 上海科委重大科技攻关项目(08dz501600)
关键词 精度测试 最后一位表示的单位 牛顿迭代 连分式 收敛阶 precision test Unit in the Last Place(ULP) Newton iteration continued-fraction convergence degree
  • 相关文献

参考文献6

  • 1LIU Z A, KAHAN W. Berkeley elementary functions test suite [ EB/OL]. [2010 - 10 - 10]. http://citeseerx. ist. psu. edu/view- doc/download?doi = 10.1.1.76. 7759&rep = repl &type = pdf.
  • 2TANG P T P. Accurate and efficient testing of the exponential and logarithm functions [ J]. ACM Transactions on Mathematical Soft- ware, 1990, 16(3) : 185 -200.
  • 3Sun.数值计算指南[R].California:Sun Microsystems,2005.
  • 4KAHAN W. A logarithm too clever by half [EB/OL]. [2011 -01 -01]. http://www, cs. berkeley, edu/- wkahan/LOG10HAF. TXT.
  • 5MULLER J M. On the definition of ULP (x) [ R]. France: Labora- toire de l' Informatique du Parallelisme, 2005.
  • 6李声锋,檀结庆,谢成军,李璐.基于Thiele连分式逼近的四阶迭代公式[J].中国科学技术大学学报,2008,38(2):138-140. 被引量:5

二级参考文献8

  • 1林成森.数值计算方法[M].北京:科学出版社,2001.173-181.
  • 2施妙根.科学与工程计算基础[M].北京:清华大学出版社,1999,8:140-142.
  • 3Basto M, Semiao V, Calheiros F L. A new iterative method to compute nonlinear equafions[J]. Applied Mathematics and Computation, 2006, 173: 468-483.
  • 4Petkovic M S, Rancic L Z. A family of root-finding methods with accelerated convergence [J]. Computers and Mathematics with Applications, 2006,51 : 999-1 010.
  • 5Kou J S, Li Y T, Wang X H. Third-order modification of Newton's method[J]. Journal of Computational and Applied Mathematics, 2007,205 : 1-5.
  • 6Grau M, Diaz-Barrero J L. An improvement of the Euler-Chebyshev iterative method [J]. J Math Anal Appl, 2006, 315: 1-7.
  • 7Burden R L, Faires J D. Numerical Analysis [M]. Sixth ed. Pacific Grove, CA: Brooks/Cole Publishing Company, 1997.
  • 8Jie-qing Tan (Institute of Applied Mathematics, College of Science and CAD/CG Division College of Computer & Information Hefei, University of Technology, Hefei 230009, China).THE LIMITING CASE OF THIELE'S INTERPOLATING CONTINUED FRACTION EXPANSION[J].Journal of Computational Mathematics,2001,19(4):433-444. 被引量:12

共引文献4

同被引文献13

  • 1何仁义,罗芳.求解非线性方程的一种连分式法[J].雁北师范学院学报,2005,21(5):50-52. 被引量:1
  • 2苏本跃,盛敏.非线性方程求解的一种新方法[J].安庆师范学院学报(自然科学版),2006,12(1):37-39. 被引量:1
  • 3施妙根.科学与工程计算基础[M].北京:清华大学出版社,1999,8:140-142.
  • 4Mallat S G. A theory for multi-resolution signal decomposi- tion: the wavelet representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989,11 (7) : 674-693.
  • 5Do M N, Vetterli M. Wavelet-based texture retrieval using generalized Gaussian density and Kullbaek-Leibler distance [J]. IEEE Transactions on Image Processing, 2002,11 ( 2 ) : 146-158.
  • 6Chen Xinwu, Ma Jianzhong. Texture image retrieval based on Contourlet-2. 3 and generalized gaussian density model [C]//2010 International conference on Computer Applica- tion and System Modeling(ICCASM), 2010 : 199- 203.
  • 7Sharifi K, Leon-Garcia A. Estimation of shape parameter for generalized Gaussian distributions in subband decompo- sitions of video[J]. IEEE Trans Circ Syst Vedio Tech, 1995,5:52-56.
  • 8Aiazzi B, Alparone L, Baronti S. Estimation based on entro- py matching for generalized Gaussian PDF modeling[J].IEEE Signal Processing, 1999,6(6) : 138- 140.
  • 9Pi Minghong. Improve maximum likelihood estimation for subband GGD parameters[DB/OL].[2010-09-03]. http// www. elsevier, eom/locate/patree.
  • 10Nguyen T T, Chauris H. Uniform discrete curvelet trans- form[J]. IEEE. Transaction on Signal Proeesslng, 2010, 58 (7) :3618-3634.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部