期刊文献+

点云模型的多分辨率简化算法 被引量:3

Multi-resolution simplification algorithm for point cloud
下载PDF
导出
摘要 为了有效地多分辨率简化点云模型,首先,采用均匀栅格法建立点云模型的拓扑关系,计算每个数据点的k邻域;然后,通过建立点云模型中数据点的协方差矩阵求得这些点的法向量,并且进行法向重定向,使所有法向量的方向都指向点云模型的外部;最后,通过衡量数据点对Laplace-Beltrami算子特征值频谱的影响,得到与数据点k邻域及其法向量相关的量化该点重要性的度量公式,随后调节控制因子的取值,实现点云模型的多分辨率简化。实验结果表明,该算法具有简化率高、保留点云模型的微小细节特征信息、简化速度快、稳定性强的特点。 To efficiently simplify point cloud by multi-resolution,firstly,uniform grids were used to represent the spatial topology relationship of point cloud and calculate the k-nearest neighbors for each data point.Then normal vectors of data points were estimated by constructing covariance matrix,and normal vectors were directed to the outside of the point cloud.Finally,the formulation for measuring the importance of data point was achieved according the effect of this point on eigenvalues spectrum of the Laplace-Beltrami operator,and it was associated with the k-nearest neighbors of this point and normal vectors,and then multi-resolution simplification of point cloud was realized by changing the value of control factor.The experimental result shows that this algorithm has high simplification rate,fast speed,strong stability,and maitains the small detailed information of point cloud.
出处 《计算机应用》 CSCD 北大核心 2011年第10期2717-2720,2789,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60873175) 安徽省教育厅自然科学基金资助项目(KJ2011Z284 KJ2011Z278)
关键词 点云 k邻域 法向量 度量公式 多分辨率简化 point cloud k-nearest neighbor normal vector measuring formulation multi-resolution simplification
  • 相关文献

参考文献12

  • 1AMENTA N, KIL Y J. The domain of a point set surface [ C]// Proceedings of Eumgraphics Symposium on Point-based Graphics. Oxford: Pergamon-Elsevier Science Ltd, 2004:139 - 147.
  • 2AMENTA N, KIL Y J. Defining point-set surfaces [ C] // Proceed- ings of ACM SIGGRAPH. New York: ACM Press, 2004:264 - 270.
  • 3DURANLEAU F, BEAUDOIN P, POULIN P. Multiresolution point- set surfaces [ C] // Proceedings of Graphics Interface 2008. Alberta: Canadian Information Processing Society, 2008: 211 - 218.
  • 4SUN W, BRADLEY C, ZHANG, Y F. Cloud data modeling emplo- ying a unified, non-redundant triangular mesh [ J]. Computer Aided Design, 2001, 33(2) : 183 - 193.
  • 5马磊,彭国华,耿东芳.基于八叉树的海量测量数据的非均匀简化[J].计算机应用,2007,27(8):2027-2029. 被引量:7
  • 6王宏涛,张丽艳,杜佶,李忠文,周儒荣.测量点集的简化及其隐式曲面重建误差分析[J].中国图象图形学报,2007,12(11):2114-2118. 被引量:16
  • 7黄文明,肖朝霞,温佩芝,吴晓军.保留边界的点云简化方法[J].计算机应用,2010,30(2):348-350. 被引量:19
  • 8OZTIRELI A C, ALEXA M, GROSS M H. Spectral sampling of manifolds [ C]//Proceedings of ACM SIGGRAPH Asia. New York: ACM Press, 2010:1 -7.
  • 9BELKIN M, NIYOGI P. Convergence of Laplacian eigenmaps [ C]// Proceedings of NIPS. Cambridge: MIT Press, 2006:129 - 136.
  • 10BRAUN M L. Accurate error bounds for the eigenvalues of the ker- nel matrix [ J]. Journal of Machine Learning Research, 2006, 7 (11) : 2303 - 2328.

二级参考文献29

  • 1钱锦锋,陈志杨,张三元,叶修梓.点云数据压缩中的边界特征检测[J].中国图象图形学报(A辑),2005,10(2):164-169. 被引量:39
  • 2贺美芳,周来水,神会存.散乱点云数据的曲率估算及应用[J].南京航空航天大学学报,2005,37(4):515-519. 被引量:27
  • 3陈飞舟,陈志杨,丁展,叶修梓,张三元.基于径向基函数的残缺点云数据修复[J].计算机辅助设计与图形学学报,2006,18(9):1414-1419. 被引量:31
  • 4WANG RENFANG, ZHANG SANYUAN, YE XIUZI. A novel simplification algorithm for point-sampled surfaces [ C]// MUE'07: International Conference on Multimedia and Ubiquitous Engineering. Soul: IEEE Computer Society: 2007:573 -578.
  • 5PAULY M, GROSS M, KOBBELT L P. Efficient simplification of point-sampled surfaces [ C ]// Proceedings of IEEE Visualization 2002. Washington, DC: IEEE Computer Society, 2002: 163- 170.
  • 6FRIEDMAN J H, BENTLEY J L, FINKEL R A. An algorithm for finding best matches in logarithmic expected time[ J]. AGM Transactions on Mathematical Software, 1977, 3(3) : 209 - 226.
  • 7HOPPE H. Hugues Hoppep's Homepage [ EB /OL ]. [2006 - 12 - 13 ]. http://research, microsoft, com/- hoppe/.
  • 8马磊,彭国华,耿东芳.基于八叉树的海量测量数据的非均匀简化[J].计算机应用,2007,27(8):2027-2029. 被引量:7
  • 9WEIR DJ,MILROY M,BRADLEY C,et al.Reverse engineering physical models employing wrap-aroud B-spline surfaces and quadrics[J].Journal of Engineering Manufacture,1996,210(B):147-157.
  • 10SUN W,BRADLEY C,ZHANG YF,et al.Cloud data modeling employing a unified,non-redundant triangular mesh[J].Compute Aided Design,2001,33(1):83-93.

共引文献36

同被引文献32

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部