期刊文献+

基于全局最近邻的离群点检测算法 被引量:6

Outlier detection algorithm based on global nearest neighborhood
下载PDF
导出
摘要 针对全局最近邻离群点检测算法的效率问题,为了能够在数据集中快速准确地检测离群点,运用属性约简技术,将离群点的搜索简约到较小的最具代表性的属性子空间中进行,从而有效降低属性空间搜索的复杂度。在此基础上,通过计算基于近邻的加权离群因子实现离群点的检测并提出了相应的算法。实验表明,该离群点算法具有较好的适应性和有效性。 Traditional outlier detection algorithms fall short in efficiency for their holistic nearest neighboring search mechanism and need to be improved.This paper proposed a new outlier detection method using attribute reduction techniques which enabled the algorithm to focus its detecting scope only on the most meaningful attributes of the data space.Under the reduced set of attributes,a concept of neighborhood-based outlier factor was defined for the algorithm to judge data's abnormity.The combined strategy can reduce the searching complexity significantly and find more reasonable outliers in dataset.The results of experiments also demonstrate promising adaptability and effectiveness of the proposed approach.
出处 《计算机应用》 CSCD 北大核心 2011年第10期2778-2781,共4页 journal of Computer Applications
基金 江苏省自然科学基金资助项目(BK2008190)
关键词 离群点检测 最近邻 属性约简 outlier detection nearest neighborhood attribute reduction
  • 相关文献

参考文献14

  • 1HE Z, XU X, DENG S. FP-outlier: Frequent pattern based outlier detection[J]. Computer Science and Information Systems, 2005, 2 (1): 103 -118.
  • 2BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density based local outliers [ C] // Proceedings of International Con- ference on Management of Data. New York: ACM Press, 2000.
  • 3ZHANG YONG, YANG SU, WANG YUANYUAN. LDBOD: A no- vel local distribution based outlier detector [ J]. Pattern Recognition Letters, 2008,29(7): 967-976.
  • 4CHEN YIXIN, DANG XIN, PENG HANXIANG. Outlier detection with the Kemelized spatial depth function [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(11) : 288 - 305.
  • 5ANGIULLI F, FASSETYI F. Very efficient mining of distance-based outliers [ C]// Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management. New York: ACM Press, 2007.
  • 6KAUR P. DFCM: Density based approach to identify outliers and to get efficient clusters in fuzzy clustering [ C]/! IEEE/WIC/ACM In- ternational Conference on Web Intelligence and Intelligent Agent Technology. Piscataway, NJ: IEEE Press, 2008.
  • 7AGGARWAL C C, YU P S. Outlier detection with uncertain data [ EB/OL]. [2010 -01 - 10]. http://www, siam. org/proeeedings/ datamining/2008/dm08 _44_aggarwal. pdf.
  • 8JIANG F, SUI Y F, CAO C G. Some issues about outlier detection in rough set theory [ J]. Expert Systems with Applications, 2009, 36 (3) : 4680 - 4687.
  • 9HE Z Y, XU X F, DENG S C. An optimization model for outlier detection in categorical data [ EB/OL]. [2010 -01 - 10]. http:// arxiv, org/ ftp/ cs/ papers/0503 /0503081. pdf.
  • 10JIANG FENG, SUI YUEFEI, CAO CUNGEN. An information en- tropy-based approach to outlier detection in rough sets [ J]. Expert Systems with Applications, 2010, 1 (37) : 6338 - 6344.

同被引文献47

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部