期刊文献+

利用核局部保持映射分析到达时间定位问题 被引量:1

Analysis of arrival time localization using kernel locality preserving projection
下载PDF
导出
摘要 为降低测距误差对定位精度的影响,提出了一种基于核局部保持映射(KLPP)的定位算法。该算法以节点间的传输时间向量为输入,借助能够体现网络拓扑结构局部信息的核局部保持映射进行建模。仿真结果表明:基于KLPP的定位算法与传统基于核函数主成分分析(KPCA)的定位算法相比,在解决TOA定位问题时具有较高的定位精度,在复杂环境下能更有效地降低测量误差对TOA定位精度的影响。 This paper aims at reducing the influence of ranging error on localization accuracy.A Wireless Sensor Network(WSN) localization algorithm was proposed,which was based on Kernel Locality Preserving Projection(KLPP).The algorithm took transmission time vector between nodes as input,and a model was established by KLPP,which can reflect partial information network topology structure.The simulation results indicate that compared with Kernel Principle Component Analysis(KPCA),the algorithm can achieve higher localization accuracy in Time of Arrival(TOA) localization and reduce the influence of ranging error on localization accuracy effectively in complex environment.
出处 《计算机应用》 CSCD 北大核心 2011年第10期2876-2879,共4页 journal of Computer Applications
基金 河北省自然科学基金资助项目(F2010001040)
关键词 无线传感网络 定位 到达时间 核局部保持映射 核主成分分析 Wireless Sensor Network(WSN) localization Time Of Arrival(TOA) Kernel Locality Preserving Projection(KLPP) Kernel Principle Component Analysis(KPCA)
  • 相关文献

参考文献10

二级参考文献176

  • 1杨钟瑾,史忠科.神经网络结构优化方法[J].计算机工程与应用,2004,40(25):52-54. 被引量:9
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3焦磊,邢建平,张军,张璇,赵朝丽.一种非视距环境下具有鲁棒特性TOA无线传感网络定位算法[J].传感技术学报,2007,20(7):1625-1629. 被引量:19
  • 4Bi Yaxin,Bell D,Wang Hui,et al.Combining multiple classifiers using dempster's rule for text categorization[J].Applied Artificial Intelligence, 2007,21 ( 3 ) : 211-239.
  • 5Hmeidi Ismail,Hawashin Bilal,El-Qawasmeh Eyas.Performance of KNN and SVM classifiers on full word Arabic articles[J].Advanced Engineering Informatics, 2008,22( 1 ) : 106-111.
  • 6Choisy C,Belaid A.Handwriting recognition using local methods for normalization and global methods for recognitian[C]//Proceedings of the 6th International Conference on Document Analysis and Recognition,2001:23-27.
  • 7Gorgevik D,Cakmakov D,Radevski V.Handwritten digit recognition by combining support vector machines using rule--based reasoning{C]// Proceedings of the 23rd International Conference on Information Technology Interfaces,2001 : 139-144.
  • 8Teow L N,Loe K F.Robust vision-based features and classification schemes for off-line handwritten digit recognition[J].Pattem Recognition, 2002,35 ( 11 ) : 2355-2364.
  • 9Schoelkopf B, Sung K, Burges C, et al.Comparing support vector machines with gaussian kernels to radial basis function classifiers[J]. IEEE Transactions on Signal Processing, 1997,45:2758-2765.
  • 10DeCoste D,Schoelkopf B.Training invariant Support Vector Machines[J].Machine Learning,2002,46: 161-190.

共引文献117

同被引文献14

  • 1吴永祥.射频识别(RFID)技术研究现状及发展展望[J].微计算机信息,2006(11Z):234-236. 被引量:119
  • 2Wylie M, Holtzman J.The non-line of sight problem in mobile location estimation[C]//IEEE International Conference on Universal Personal Communications, 1996:827-831.
  • 3Chen P.A non-line-of-sight error mitigation algorithm in location estimation[C]//Wireless Communications and Networking Conference, 1999:316-320.
  • 4Dellaert F,Fox D,Burgard W,et al.Monte Carlo locali- zation for mobile robots[C]//Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, 1999.
  • 5Jourdan D,Deyst J,Win M.Monte-Carlo localization in dense multipath environments using UWB ranging[C]// Proceedings of IEEE International Conference on Ultra- Wideband, Zurich, 2005 : 314-319.
  • 6Kosztin L, Faber B, Schu!ten K.Introduction to the diffusion Monte Carlo method[J].Am J Phys, 1996,64.
  • 7孙祉伟.量子蒙特卡罗法的研究[c]//祝贺郑哲敏先生八十华诞应用力学报告会,北京,2004.
  • 8林敏,鲍煦,王刚.改进Monte Carlo算法用于RFID标签的室内定位[J].微计算机信息,2008,24(14):203-204. 被引量:9
  • 9赵珊,张勤,熊莹.一种基于散射体模型的NLOS误差抑制方法[J].广东通信技术,2009,29(4):69-73. 被引量:2
  • 10陈奎,徐钊.井下频域超分辨率TOA定位算法[J].工矿自动化,2009,35(6):24-28. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部