期刊文献+

冷绝缘高温超导电缆绝缘设计的研究(英文) 被引量:3

Research on the insulation design of the cold dielectric high temperature superconducting cable
下载PDF
导出
摘要 目前随着国内外高压输电系统的不断发展,许多研究机构一直试图开发高电压等级的高温超导电缆系统,这就要求设计的HTS电缆要有可靠的绝缘性能和优化的绝缘设计技术。根据超导电缆的结构特点和高温超导电缆系统的运行特点,对Nomex和PPLP进行了交流耐压、雷电冲击、局部放电(PD)起始电压和热循环等高压绝缘特性试验。根据不同厚度和不同层数的Nomex和PPLP在上述特性试验下的威布尔(Weibull)分布,得出了相应厚度和层数下的No-mex和PPLP的绝缘特性参数。提出了一种改进的冷绝缘高温超导电缆绝缘设计方法,并对此方法下设计的35kV微型电缆绝缘模型进行了相关高压绝缘试验,验证了此种绝缘设计方法的可行性。根据提出的绝缘设计方法得出了220 kV冷绝缘高温超导电缆的绝缘厚度,并将在已有试验的基础上继续完善绝缘设计方法,最终设计出220 kV电压等级的绝缘测试模型。 As the continuous development of transmission system requires for higher voltage level, many research institutes have been trying to develop high voltage High Temperature Superconducting (HTS) cable system, which require reliable insulation characteristics and optimum insulation design skills. According to the structural characteristics of superconducting cables and the operating characteristics of the HTS system, this paper presents Nomex and PPLP's performance on AC breakdown, lightning impulse breakdown, partial discharge (PD) inception characteristics and thermal cycling performance of corresponding maximum electric design stress is estimated according to the Weibull distribution of Nomex and PPLP in different conditions. After the design and test of a 35kV mini -cable which is used to prove the feasibility of the insulation design, a modified Cold Dielectric (CD) HTS power cable insulation design methodology for HV is proposed. Consequently, a 220 kV level prototype cable model which uses stainless steel instead of HTS cable for the insulation test will be ultimately manufactured.
出处 《低温与超导》 CAS CSCD 北大核心 2011年第9期33-39,共7页 Cryogenics and Superconductivity
基金 supported in part by the National Natural Science Foundation of China under grant No.5107705 Specialized Research Fund for Doctoral Program of Higher Education under grant No.D00033
关键词 PPLP NOMEX 绝缘设计 冷绝缘 PPLP, Nomex, Insulation design, Cold dielectric
  • 相关文献

参考文献15

  • 1Stovall J P, Demko J A, Fisher P W, et al. Installation and operation of the Southwire 30 - meter high - temperature superconduct - ing power cable [ J ]. IEEE Trans on Applied Superconductivity,2001 ( 1 ) :2467 - 2472.
  • 2Hayakawa N, Nagino M, Kojima H, et al. Dielectric Characteristics of HTS Cables Based on Partial Discharge Measurement. IEEE Trans on Applied Superconductivity [ J ]. 2005,15 (2).
  • 3Reis C T, Dada A, Masuda T, et al. Planned grid installation of high temperature cable in Albany, NY [ C ]. Power Engineering Society General Meeting, 2004, IEEE, 2004(2) : 1436 - 1440.
  • 4Kim D W, Jiang H M, Lee C H, et al. Development of the 22.9 - kV class HTS power cable in LG cable[ J].IEEE Trans on Applied Superconductivity, 2005 (2): 1723- 1726.
  • 5Kosaki M. Development of cross - linked polyethylene insulated Superconducting cable[ J]. proceedings of the twenty- first symposium on electrical insulation material, 1998.
  • 6M J Gouge. Development and testing of HTS cable and terminations at ORNL[ J]. IEEE Transaction on Applied Superconductivity, 2001 ( 11 ).
  • 7M Kosaki. Research and development of electrical insulation of superconducting cables by extruded polymers [J]. IEEE Electrical Insulation Magazine, 1996.
  • 8Choi J W, Cheon H G, Choi J H,et al. A Study on Insulation Characteristics of Laminated Polypropylene Paper for an HTS Cable [ J ]. IEEE Trans. Appl. Supercond. , 2010,20 ( 3 ).
  • 9Yukio Min zuno,et al. Evaluation of ethylene propylene rubber as an electrical and electrical insulation material of superconducting cable [ C ]. Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Material, 1991.
  • 10Sumereder C. Dielectric measurement on HTS insulation systems for electric power equipment [ J ]. Elsevier Science B. V, 2002.

同被引文献25

  • 1李继春,张立永,曹雨军,夏芳敏,叶新羽,朱红亮.冷绝缘高温超导电缆循环冷却系统设计及运行分析[J].低温与超导,2020,0(2):7-11. 被引量:8
  • 2陈艳俊,于龙波.刍议超导电缆绝缘材料的应用[J].区域治理,2019,0(10):281-281. 被引量:1
  • 3MaguireJ F, Schmidt F, Bratt S, et al. Development and demonstration of long length HTS cable to operate in the long island power authority transmission grid [ J ]. IEEE Trans. Appl. Supercond. , 2007,17 (2) : 1787 - 1792.
  • 4Weber C S,Lee R,Ringo S,et al. Testing and Demon- stration Results of the 350m Long HTS Cable System in- stalled in Albany, NY [ J ] , IEEE Trans. Appl. Super- cond. , 2007,17(2) :2038 -2042.
  • 5Ichikawa M, Torri S, Takahasgi T, et al. Quench proper- ties of 500m HTS power cable[J]. IEEE Trans. Appl. Supercond. , 2007,17 (2) : 1668 - 1671.
  • 6Jae - Young, Seung Ryul Lee, Jong Yue Kim. Applica- tion methodology for 22.6kV HTS cable in metropolitan city of South Korea [ J ], IEEE Trans. Appl. Super- eond. , 2007,17(2) :1648 - 1651.
  • 7Joon -Han Bae, Suk - Jin Choi, SangJin Lee, et al. The stability evolution on HTS power cable [ J ]. IEEE Trans. Appl. Supercond. , 2008,18(2) :1289 - 1292.
  • 8Ying Xin, Bo Hou, Yanfang Bi, et al. China' s 30m, 35kV/2kA ac HTS power cable [ J]. Supercond. Sci. Technol. , 2009,17 : S332 - S335.
  • 9Dai S T, Lin L Z, Lin Y B, et al. The three -phase 75m long HTS power cable [ J ]. Cryogenics, 21307,47:402 - 405.
  • 10William V Hassenzahl, Steven E C Eckroad, Paul M Grant, et al. A high - power superconducting DC cable [ J ]. IEEE Trans. Appl. Supercond. , 2009,19 (3) : 1756 - 1759.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部