期刊文献+

基于CART决策树数据挖掘算法的应用研究 被引量:36

Applied Research on Data Mining Based on CART Decision Tree Algorithm
下载PDF
导出
摘要 分类与回归树CART算法是数据挖掘技术中重要的算法。依据CART算法理论,采用类型变量求解决策树,并引入优化的分裂函数,然后利用基于类型变量的论域划分创建二叉树,抽取和筛选预测准则,从而为职能部门决策提供科学而可靠的依据。最后以贵州师范大学教学与管理中的数据,给出算法的应用实例。 CART-Classificationand Regression Trees algorithm is an important algorithm in Data Mining. In this paper, we based on the theory of CART algorithm, adopted the algorithm of solving the decision tree under the categorical variables, introduced the optimized splitting function, and then made use of the division of the universe of discourse in type variable to construct binary tree, extracted and screened the forecasting criterion. The purpose of this paper is to provide a scientific and reliable basis for the department decision. At last, the application example of the algorithm was provided with the data in teaching and administration of GuiZhou normal university in this paper.
出处 《煤炭技术》 CAS 北大核心 2011年第10期164-166,共3页 Coal Technology
基金 贵州省科学技术基金项目(黔科合J字LKS[2009]11号)
关键词 CART 决策树 类型变量 数据挖掘 CART decision tree type variable data mining
  • 相关文献

参考文献6

二级参考文献13

共引文献164

同被引文献288

引证文献36

二级引证文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部