期刊文献+

铸态Ti-46Al-6(Cr,Nb,Si,B)合金的高温流变行为及其组织演变 被引量:3

High Temperature Flow Behavior and Microstructural Evolution of As-cast Ti-46Al-6(Cr,Nb,Si,B) Alloy
原文传递
导出
摘要 以3次真空自耗熔炼的Ti-46Al-6(Cr,Nb,Si,B)(at%)(以下简称G4合金)合金为对象,采用恒温等应变速率热模拟压缩试验研究G4合金在1050~1250℃及0.001~1s-1应变速率下的高温流变行为和组织演变。结果表明,在高温变形过程中,G4合金呈现先硬化后软化的流变行为特征,组织由粗大的铸态γ+γ/α2近片层组织演变为细小的近等轴γ+α2组织;造成G4合金流变软化和组织演变的主要原因是动态再结晶(DRX)。变形温度和应变速率是影响G4合金高温流变和组织演变的2个主要因素。铸态G4合金在高温下的变形机制以γ/α2层片晶团的扭折、弯曲、球化和DRX以及γ晶粒的拉长、破碎和DRX为主,孪生变形也起到了一定的辅助作用。其最佳高温塑性变形温度为1150℃,应变速率应不大于0.1s-1。 The samples of Ti-46Al-6(Cr,Nb,Si,B) (at%),G4 alloy for short,were hot compressed in the temperature range of 1050-1250 oC at constant strain rate from 0.001~1 s-1 for high temperature flow behavior and microstructural evolution study. The results show that G4 alloy displays a flow characteristic of hardening followed by softening during hot compression. The microstructure of G4 alloy evolves from as-cast big size γ+γ/α2 to small size near-equiaxed γ+α2. Dynamic recrystallization (DRX) is the main reason that results in flow softening and macro- and micro-structure evolution of G4 alloy. Temperature and strain rate are the two main factors that influence flow softening behavior and microstructure evolution of the G4 alloy during high temperature deformation. The main transformation mechanism of the G4 alloy at elevated temperature is kinking,curving,globalizing and DRX of γ/α2 lamellae,and elongating,breaking and DRX of γ grain,with twining as an auxiliary deformation mode. The optimum temperature for hot forming of cast near lamella G4 alloy is 1150 oC,and the strain rate should not exceed 0.1 s-1.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第9期1544-1549,共6页 Rare Metal Materials and Engineering
关键词 TIAL合金 热压缩模拟试验 高温流变行为 组织演变 动态再结晶(DRX) TiAl alloy hot compression test high temperature flow behavior microstructure evolution dynamic recrystalization (DRX)
  • 相关文献

参考文献14

  • 1Dimiduk D M. Materials Science and Engineering A[J], 1999, 263(2): 281.
  • 2Loria E A. lntermetallics[J], 2000, 8 (9-11): 1339.
  • 3李金山,张铁邦,常辉,寇宏超,周廉.TiAl基金属间化合物的研究现状与发展趋势[J].中国材料进展,2010,29(3):1-5. 被引量:43
  • 4Semiatin S L, Seetharaman V. Materials Science and Engineering A[J], 1998, 243:1.
  • 5Alain Lasalmonie. lntermetallics[J], 2006, 14:1123.
  • 6Semiatin S L, Seetharaman V, Jain V K. Metall & Mater Trans A[J], 1994, 25A(12): 2753.
  • 7Liu C T, Schneibel J H, Maziasz P J. lntermetallics[J], 1996, 4: 429.
  • 8Jeoung Han Kim. Metall & Mater Trans A[J], 2003, 34A(10): 2003.
  • 9Hee Y Kim, Soon H Hong. Metals and Materials[J], 1998, 4 (4): 765.
  • 10Seetharaman V, Sematin S L. Metall & Mater Trans A[J], 1997, 28A(11): 1997.

二级参考文献38

  • 1Loria E A. Gamma Titanium Aluminides as Prospective Structural Materials[J]. lnterrnetallics, 2000, 8(9-11): 1 339-1 345.
  • 2Dimiduk D M. Gamma Titanium Aluminide Alloys--An Assessment within the Competition of Aerospace Structural Materials [ J ]. Materials Science and Engineering A, 1999, 263(2) : 281 -288.
  • 3Ramanujan R V. Phase Transformations in Gamma Based Titanium Aluminides [ J]. International Materials Reviews, 2000, 45 : 217 -240.
  • 4Chen Y, Kong F, Han J, et al. Influence of Yttrium on Microstructure, Mechanical Properties and Deformability of Ti-43Al-9V AHoy[J]. IntermetaUics, 2005, 13(3-4): 263-266.
  • 5General Electric. Titanium Aluminide [ EB/OL ]. (2009 - 09 - 21)[2009-10-31]. http: //en. wikipedia, org/wiki/Titanium_ aluminide.
  • 6Lasalmonie A. Intermetallics: Why is it so Difficult to Introduce Them in Gas Turbine Engines? [J]. Intermetallics, 2006, 14 (10-11): 1 123-1 129.
  • 7Appel F, Oehring M. y-Titanium Aluminide Alloys: Alloy Design and Properties[ C ]//Titanium and Titanium Alloys--Fundamentals and Applications. Weinheim: Wiley-Vch Verlag GmbH & Co KGaA, 2003: 114.
  • 8Wu Y H, Wang S K. Microstructural Refinement and Improvement of Mechanical Properties and Oxidation Resistance in EPM TiAl-Based Intermetallics with Yttrium Addition[J]. Acta Materialia, 2002, 50(6): 1479-1493.
  • 9Chan K S, Kim Y W. Effects of Lamellae Spacing and Colony Size on the Fracture Resistance of a Fully-Lamellar TiAl Alloy [ J ]. Acta Metallurgica et Materialia, 1995, 43(2) : 439 -451.
  • 10Liu Z C, Lin J P, Li S J, et al. Effects of Nb and Alon the Microstructures and Mechanical Properties of High Nb Containing TiAl Base Alloys [ J ]. lntermetallics, 2002, 10 ( 7 ) : 653 - 659.

共引文献42

同被引文献34

  • 1王辉,刘咏,张伟,李洲,李慧中,王丽,杨广宇.粉末冶金TiAl合金热变形行为及加工图的研究[J].稀有金属,2010,34(2):159-165. 被引量:8
  • 2黄劲松,刘咏,贺跃辉,张永红,刘彬,张伟,何晓宇,黄伯云.铌、钨和硼在TiAl基合金中的分布及其对组织的影响[J].粉末冶金材料科学与工程,2006,11(1):32-37. 被引量:6
  • 3曾卫东,周义刚,周军,俞汉清,张学敏,徐斌.加工图理论研究进展[J].稀有金属材料与工程,2006,35(5):673-677. 被引量:114
  • 4李宝辉,陈玉勇,孔凡涛.Ti-45Al-5Nb-0.3Y合金的等温热变形模拟及包套锻造[J].航空材料学报,2007,27(3):42-46. 被引量:6
  • 5GERLING R, SCHIMANSKY F P, STARK A, et al.Microstructure and mechanical properties of Ti45AI5Nb+ (0-0.5C) sheets [J]. lntermetallics, 2008, 16(5): 689-697.
  • 6ZHANG Wei, LIU Yong, LI Hui-zhong, et al. Constitutive modeling and processing map for elevated temperature flow behaviors of a powder metallurgy titanium aluminide alloy [J]. Journal of Materials Processing Technology, 2009, 209 (12/13): 5363-5370.
  • 7FUCHS G E. Supertransus processing of TiAl-based alloy[J]. Metallurgical and Materials Transaction A, 1998, 29(1): 27-36.
  • 8NIU H Z, CHEN Y Y, XIAO S L, et al. High temperature deformation behaviors of Ti-45A1-2Nb-l.5V-1Mo-Y alloy[J]. Intermetallics, 2011, 19: 1767-1774.
  • 9RAVICHANDRAN N, PRASAD Y V R K. Dynamic recrystallization during hot deformation of aluminum. A study using processing maps [J]. Metall Trans, 1991, 22A(10): 2339-2348.
  • 10MANNAN S L, PRASAD Y V R K, VENUGOPAL S. Optimization of hot workability in stainless steel-type AIS1-304L using processing maps[J]. Metall Trans, 1992, 23A(11): 3093-3103.

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部