期刊文献+

热丝法制备硅纳晶颗粒及其发光性质

Synthesis of Silicon Nanocrystals by HFCVD and Their Photoluminescence
下载PDF
导出
摘要 利用热丝化学气相沉积法,在真空腔中通过选择设定不同加热功率的热丝热解硅烷制备出一系列不同颗粒尺寸的硅纳米颗粒样品。透射电镜分析表明硅纳米颗粒具有结晶良好的纳晶结构。通过自然氧化钝化硅纳米颗粒表面,消除表面悬键的影响,使得硅颗粒具有高效的光致发光特性,发光范围在红光到近红外区,发光特性与量子限域效应相吻合。发光寿命测量表明所制备的硅颗粒的发光寿命在微秒量级,并且通过比较不同硅颗粒分布样品中相同发光波长衰减寿命的差异,揭示了所制备样品中硅纳米颗粒之间存在耦合作用。 Using the hot filament chemical vapor deposition(HFCVD) method,through choosing hot wires with different heating power to pyrolyze silane in the vacuum cavity,a series of diffe-rent particle sizes for the silicon nanocrystals(NCs) samples were prepared.The analysis of the transmission electron microscopy(TEM) shows that the NCs have the nanocrystal structure with good crystallization.Through the natural oxidation passivation of silicon NCs surface to eliminate the effect of dangling bonds,the silicon particles have high efficient photoluminescence characteristics,and the luminous range is from the red light to near infrared,the luminescence characteristic is consistent with the quantum confinement effect.The shine life measurement shows that the shine life of the prepared silicon NCs is in microseconds magnitude.The coupling effect of the prepared silicon NCs samples was revealed by comparing the difference of the decay time at the same wavelength in different silicon particles distribution samples.
出处 《微纳电子技术》 CAS 北大核心 2011年第9期573-576,共4页 Micronanoelectronic Technology
关键词 热丝化学气相沉积 硅纳米颗粒 光致发光 量子限域效应 衰减寿命 hot filament chemical vapor deposition(HFCVD) silicon nanocrystal(NC) photoluminescence quantum confinement effect decay time
  • 相关文献

参考文献10

  • 1CANHAM L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl Phys Lett, 1990, 57 (10) : 1046- 1048.
  • 2SAETA P N, GALLAGHER A C. Photoluminescenee proper- ties of silicon quantum-well layers [J].Phys Rev: B, 1997, 55 (7) : 4563- 4574.
  • 3OHNO T, SHIRAISHI K, OGAWA T. Intrinsic origin of visible light emission from silicon quantum wires: electronic structure and geometrically restricted exciton [J]. Phys Rev Lett, 1992, .69 (16) 2400- 2403.
  • 4SYCHUGOV I, JUHASZ R, VALENTA J, et al. Narrow lu- minescence linewidth of a silicon quantum dot[J].Phys Rev Lett, 2005, 94 (8): 7405-7408.
  • 5FENG T, YU H B, DICKEN M, et al. Probing the size and density of silicon nanocrystals in nanocrystal memory device applications [J].Appl Phys Lett, 2005, 86 (3): 3103- 3105.
  • 6KLIMOV V I. Spectral and dynamical properties of multiexci tons in semiconductor nanocrystals [J]: Annu Rev Phys Chem, 2(107, 58 (1): 635-673.
  • 7EROGBOGBO F, YONG K, ROY I, et al. Biocompatible lu- minescent silicon quantum dots for imaging of cancer cells [J]. ACSNano, 2008, 2 (5): 873-878.
  • 8TAKAGAHARA T, TAKEDA K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials[J].PhysRev: B, 1992, 46 (23) 15578-15581.
  • 9CHEYLANA S, ELLIMAN R G. Effect of particle size on the photoluminescence from hydrogen passivated Si nanocrystals in SiO2[J]. ApplPhys Lett, 2001, 78 (13): 1912-1914.
  • 10LINNROS J, LALIC N, GALECKAS A, et al. Analysis of the stretched exponential photoluminescence decay from nano- meter-sized silicon crystals in SiO2 [J].J Appl Phys, 1999, 86 (11): 6128-6134.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部