期刊文献+

时间序列数据流预测模型应用研究

Application research for prediction of time series data stream
下载PDF
导出
摘要 时间序列数据流中蕴含了大量潜在信息,可以作为智能决策的依据。研究时间序列数据流的变化趋势,预测其未来一段时间的可能值,能够为当前的决策提供重要的支持。提出用链式可重写窗口技术代替传统的滑动窗口技术,并结合经验模式分解和径向基神经网络建立时间序列数据流在线预测模型——Online_DSPM。实验结果表明,与单一时间序列数据流预测模型相比,该模型具有较高的预测精度和校好的模型适应性。 Time series data stream contains a large amount of potential information that can be used as the basis for intelli- gent decision-making.It can provide an important support for the application of real-time decision by researching data stream prediction.Therefore,re-writable linked window technology is proposed that can replace the traditional sliding window technol- ogy, and combined with empirical mode decomposition and radial basis neural networks one online time series data stream prediction model is established called Online DSPM.The experimental results indicate that the combined model has higher precision of prediction and better adaptability,compared with other single time series prediction models.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第26期135-139,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.50679011 国家重点基础研究发展规划(973) No.2009CB226111~~
关键词 数据流 在线预测 经验模式分解 径向基神经网络 链式可重写窗口 data stream online prediction empirical mode decomposition radical basis function neural network re-writablelinked window
  • 相关文献

参考文献13

二级参考文献19

  • 1罗发龙,李衍达.神经网络信号处理研究评述[J].电子瞭望,1993(9):5-10. 被引量:13
  • 2郭龙江,李建中,王伟平,张冬冬.数据流上的连续预测聚集查询[J].计算机研究与发展,2004,41(10):1690-1695. 被引量:4
  • 3Rakesh Agrawal, Ramakrishnan Srikant. Fast algorithms for mining association rules. The 20th Int' l Conf on Very Large Data Bases, Santiago, Chile, 1994
  • 4J Han, J Pei, Y Yin. Mining frequent Patterns without candidate generation. In: Proc of the 2000 ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 2000
  • 5Ramakrishnan Srikant, Rakesh Agrawal. Mining sequential patterns: Generalizations and performance improvements. In:Peter M GApers, Mokrane Bouzeghoub, Georges Gardarin, eds.In: Proc of the 5th Int'l Conf Extending Database Technology,LNCS 1057. Berlin: Springer-Verlag, 1996. 3~17
  • 6J Pei, J Han, B Mortazavi-Asl, et al. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth.The 2001 Int'l Conf on Data Engineering (ICDE' 01 ),Heidelberg, Germany, 2001
  • 7Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Madison, Wisconsin, USA: ACM Press, 2002. 1-16
  • 8Jain A, Chang E Y, Wang Yuan-Fang. Adaptive stream resource management using Kalman filters. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. Paris, France, USA: ACM Press, 2004.11-22
  • 9Papadimitriou S, Sun Ji-Meng, Faloutsos C. Streaming pattern discovery in multiple time-series. In: Proceedings of the 31st International Conference on Very Large Data Bases.Trondheim, Norway: VLDB Endowment, 2005. 697-708
  • 10Sun Ji-Meng, Papadimitriou S, Faloutsos C. Distributed pattern discovery in multiple streams. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD). Singapore, Berlin: Springer-Verlag,LNCS, 2006. 73918:13-718

共引文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部