期刊文献+

Poisson时空白噪声扰动的抛物型随机偏微分方程的解(英文)

The Solution of Parabolic SPDEs Driven by Poisson and Time-space White Noises
下载PDF
导出
摘要 考虑了一类由Poisson白噪声和时空白噪声扰动的抛物型随机偏微分方程,证明了这类方程L^2(R)值解的存在唯一性. A class of one-dimensional parabolic stochactic partial differential equation driven by Poisson white noise and time-space white noise is studied.The existence and uniqueness of L^2(R) -valued solutions of this equation are obtained.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期61-66,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by National Natural Science Foundation of China(71071111,70671074)
关键词 抛物型随机偏微分方程 Poisson白噪声 时空白噪声 parabolic stochactic partial differential equations Poisson white noises time-space white noises
  • 相关文献

参考文献6

  • 1Walsh J B. An Introduction to Stochastic Partial Differential Equations (Lect Notes in Math 1 180)[M]. Berlin.. Springer Verlag, 1986.
  • 2Albeverio S, Wu J L, Zhang T S. Parabolic SPDEs driven by Poisson white noise[J]. Stoch Proc Appl, 1998, 74: 21--36.
  • 3Applebaum D, Wu J L. Stochastic partial differential equations driven by Levy space-time white noise[J]. Random Oper Stochastic Equations, 2000, 8: 245- 257.
  • 4Truman A, Wu J L. Stochastic Burgers equation with Levy space-time white noise[J]. Probabilistic Methods in Fluids, 2003.. 298-- 323.
  • 5Mytnik L. Stochastic partial differential equation driven by stable noise[J]. Probab Theory Relat Fields, 2002, 123: 157--201.
  • 6Gyongy I, Nualart D. On the stochastic Burgers' equation in the real line[J]. Ann Prob, 1999, 27.:782--802.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部