期刊文献+

分数阶扩散-波动方程数值求解 被引量:4

Numerical method for the fractional order diffusion-wave equation
原文传递
导出
摘要 针对Caputo分数阶导数意义下的时间分数阶扩散-波动方程进行数值研究.利用Caputo分数阶导数与Grunwald-Letnikov分数阶导数的关系对时间分数阶导数进行时间离散化处理,再利用二阶中心差商离散方程中的二阶空间导数,并结合边值条件的离散化,把离散化方程的求解转化为一个线性方程组的求解.利用Mat-lab编程实现了离散化方程组的求解,并绘制了不同参数下的数值解曲面. Concerned with the numerical solving for the time fractional order diffusion-wave equation defined with the Caputo derivative.First by making use of the relation between the Caputo derivative and the Grunwald-Letnikov derivative,the time fractional derivatives can be discreted.Then the second-order space derivative in the equation is approximated by the second-order central difference quotient.Combined with the discretization of boundary value conditions,the solution of the discretization equations are transformed into linear equations' solution.Using Matlab programming to implement the above arithmetic,and draw the surface of numerical solution in different parameters.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期508-511,516,共5页 Journal of Fuzhou University(Natural Science Edition)
关键词 扩散-波动方程 分数阶导数 数值解 diffusion-wave equation fractional order derivative mmerical method
  • 相关文献

参考文献10

  • 1章红梅,刘发旺.空间分数阶扩散方程的超线性收敛离散格式[J].厦门大学学报(自然科学版),2007,46(4):464-468. 被引量:4
  • 2蔡新,陈景华.分数阶常微分方程的数值解法[J].集美大学学报(自然科学版),2007,12(4):367-370. 被引量:4
  • 3陈文,孙洪广.分数阶微分方程的数值算法:现状和问题[J].计算机辅助工程,2010,19(2):1-2. 被引量:10
  • 4Wyss W. The fractional diffusion equation [ J ]. Journal of Mathematical Physics, 1986, 27 ( 11 ) : 2 782 - 2 785.
  • 5Schneider R W, Wyss W. Fractional diffusion and wave equations[J]. Journal of Mathematical Physics, 1989, 30 (1) : 133 - 144.
  • 6Liu Fawang, Anh V, Turner I, et al. Time fractional advection -dispersion equation[J]. Journal of Applied Mathematics and Computing, 2003, 13(1/2): 233-245.
  • 7林然,刘发旺.分数阶常微分方程初值问题的高阶近似[J].厦门大学学报(自然科学版),2004,43(1):21-25. 被引量:8
  • 8Zhuang Pinghui, Liu Fawang. Implicit difference approximation for the time fractional diffusion equation[J]. Journal of Applied Mathematics and Computing, 2006, 22(3) : 87 -99.
  • 9Weilbeer M. Efficient numerical method for fractional differential equations and their analytical background [ D ]. Brunswick: Technische Universitat Braunschweig, 2005: 64- 177.
  • 10刘保柱,苏彦华,张宏林.MATLAB7.0从入门到精通[M].北京:人民邮电出版社,2006.

二级参考文献18

  • 1庄平辉,刘发旺.空间-时间分数阶扩散方程的显式差分近似[J].高等学校计算数学学报,2005,27(S1):223-228. 被引量:15
  • 2章红梅,刘发旺.数值求解Lévy-Feller扩散方程[J].高等学校计算数学学报,2005(S1):238-241. 被引量:3
  • 3波利亚G 舍贵G.数学分析中的问题和定理(第二卷)[M].上海:上海科学技术出版社,1985.115.
  • 4[10]翟瑞彩,谢伟松.数值分析[M].天津:天津大学出版社,2003,223-254.
  • 5[1]OLDHAM K B,SPANIER J C.The fractional calculus[M].San Diego:Academic Press,1974.
  • 6[2]LUBICH Ch.Diseretized fractional calculus[J].SIAM J Math Anal,1986,17(3):704-719.
  • 7[3]BAGLEY R L,CALICO R A.Fractional order state equations for the control of viscoelastic structures[J].Journal of Guidance,Control and Dynamics,1999,14(2):304-311.
  • 8[4]KOELLER R C.Polynomical operators,Stieltjes convolution,and fractional calculus in hereditary mechanics[J].Acta Mechanice,1984,58:299-307.
  • 9[5]KOELLER R C.Application of Fractional calculus to the theory of viscoelasticity[J].Journal of Applied Mechanics,1984,51:299-307.
  • 10[6]SKAAR S B,MICHEL A N,MILLER R K.Stability of viscoelastic control systems[J].IEEE Transactions on Automatic Control,1988,3(4):348-357.

共引文献18

同被引文献32

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部