期刊文献+

一种新的支持向量回归机的模型选择方法 被引量:1

A novel approach of model selection for SVR
原文传递
导出
摘要 针对支持向量回归机的模型选择问题,将模型选择问题转化为一个非线性系统的状态估计问题,然后引入无迹卡尔曼滤波进行求解,提出一种新的基于无迹卡尔曼滤波的模型选择方法(UKF-SVR).对标准数据集和太阳黑子数平滑月均值进行仿真实验,结果表明,UKF-SVR与粒子群算法相比,该方法全局寻优能力更强,保证了支持向量回归机泛化能力的最大化,获得更高的预测精度. To solve the model selection for support vector regression,we present a novel approach based on unscented Kalman filter(UKF).first we transform the problem of model selection for SVR into a problem of nonlinear system state estimation,and introduce UKF to solve it.Compare to particle swarm algorithm,experiments on basic data sets and prediction of the smoothed monthly mean sunspot numbers show that the UKF approach has stronger optimization ability,which fully guarantees maximal generalization ability of SVR and obtains higher precision of prediction.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期527-532,538,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(60573076) 福建省新世纪优秀人才资助项目(XSJRC2007-11)
关键词 支持向量回归机 参数选择 模型选择 无迹卡尔曼滤波 support vector regression parameters selection model selection UKF
  • 相关文献

参考文献12

  • 1Vapnik V N, Vapnik V. Statistical learning theory[ M]. New York: Wiley, 1998.
  • 2Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vector machines [ J ]. Machine Learning, 2002, 46(1) : 131 - 159.
  • 3Keerthl S S, Sindhwani V, Chapelle O. An efficient method for gradient - based adaptation of hyperparameters in SVM models [ J ]. Advances in Neural Information Processing Systems, 2007,19 : 673 - 680.
  • 4邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(5):740-743. 被引量:128
  • 5颜根廷,李传江,马广富.基于混合遗传算法的支持向量机参数选择[J].哈尔滨工业大学学报,2008,40(5):688-691. 被引量:15
  • 6Lanckriet G R G, Cristianini N, Bartlett P, et al. Learning the Kernel matrix with semidefinite programming[ J ]. The Journal of Machine Learning Research, 2004 (5) : 27 - 72.
  • 7Kalman R E. A new approach to linear fdtefing and prediction problems[J]. Journal of Basic Engineering, 1960, 82( 1 ) : 35 - 45.
  • 8Julier S J, Uhlmann J K, Durrant - Whyte H F. A new approach for filtering nonlinear systems [ C ]//Proceedings of the American Control Conference. Seattle: [s. n. ], 1995:1 628 -1 632.
  • 9Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation[C]//Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. [ s. l. ] : IEEE AS - SPCC, 2002 : 153 - 158.
  • 10Mu T, Nandi A K. Automatic tuning of 12 -SVM parameters employing the extended Kalman filter[ J]. Expert Systems, 2009, 26(2) : 160- 175.

二级参考文献17

  • 1邵信光,杨慧中,石晨曦.ε不敏感支持向量回归在化工数据建模中的应用[J].东南大学学报(自然科学版),2004,34(B11):215-218. 被引量:6
  • 2VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Springer-Veriag,1995.
  • 3SMOLA A J,SCHOLKOPF B.A tutorial on support vector regression[R].NeuroCOLT2 Technical Report NC2-TR-1998-030.London:Royal Holloway College,University of London,1998.
  • 4SANCHEZ A D.Advanced support vector machines and kernel methods[J].Neurocomputing,2003,55(1):5-20.
  • 5CHAPPELLE O,VAPNIK V,BOUSQUET O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1):131-160.
  • 6CHEN Pengwei,WANG Jungying,LEE Hahnming.Model selection of SVMs using GA approach[C]//Proc of 2004 IEEE Int Joint Conf on NeuralNetworks.Piscataway,NJ:IEEE Press,2004:2035-2040.
  • 7ZHENG Chunhong,JIAO Licheng.Automatic parameters selection for SVM based on GA[C]//Proc of the 5th World Congress on Intelligent Control and Automation.Piscataway,NJ:IEEE Press,2004:1869 -1872.
  • 8KENNEDY J,EBERHART R.Particle swarm optimization[C] //Procof IEEE Int Conf on Neural Networks,Perth,Australia.Piscataway,NJ:IEEE Press,1995:1942-1948.
  • 9EBERHART R,KENNEY J.A new optimizer using particle swarm theory[C]//Proc of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan.Piscataway,NJ:IEEE Press,1995:39-43.
  • 10VANDEN B F,ENGELBRECHT A P.Training product uhit networks using cooperative particle swarm optimizers[C]]//Proc of the Third Genetic and Evolutionary Computation Conference (GECCO),San Francisco,USA.Piscataway,NJ:IEEE Press,2001:126-132.

共引文献141

同被引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部