摘要
研究了非线性分数阶微分方程边值问题Dα0+u(t)+f(t,u(t))=0,0<t<1;u(0)=u(1)=u'(0)=0,的Green函数及其性质,其中2<α≤3是实数,Dα0+是标准Riemann-Liouville型微分,并利用锥不动点定理和混合单调方法证明了奇异边值问题解的唯一性。最后举例加以说明。
Green's function and its properties for the nonlinear fractional differential equation boundary valueproblem Dο^α+μ(t)+f(t,μ(t))=0,0〈t〈1;μ(0)=μ(1)=μ'(0)=0, is considered where2〈α〈3 is a real number, and Dο^α is the standard Riemann-Liouville differentiation. As an application of Green's function and its properties, uniqueness of solution is given for the singular boundary value problem by means of a fixed-point theorem on cones and a mixed monotone method. One concrete example is respectively given to explain the above theorem finally.
出处
《科学技术与工程》
2011年第26期6253-6257,共5页
Science Technology and Engineering
关键词
分数阶微分方程
奇异边值问题
唯一解
分数阶格林函数
不动点定理
fractional differential equation singular boundary-value problem unique solution frac- tional Green's function fixed-point theorem