期刊文献+

非线性分数阶微分方程奇异边值问题的唯一解

Unique Solution for the Singular Boundary Value Problem of A Nonlinear Fractional Differential Equation
下载PDF
导出
摘要 研究了非线性分数阶微分方程边值问题Dα0+u(t)+f(t,u(t))=0,0<t<1;u(0)=u(1)=u'(0)=0,的Green函数及其性质,其中2<α≤3是实数,Dα0+是标准Riemann-Liouville型微分,并利用锥不动点定理和混合单调方法证明了奇异边值问题解的唯一性。最后举例加以说明。 Green's function and its properties for the nonlinear fractional differential equation boundary valueproblem Dο^α+μ(t)+f(t,μ(t))=0,0〈t〈1;μ(0)=μ(1)=μ'(0)=0, is considered where2〈α〈3 is a real number, and Dο^α is the standard Riemann-Liouville differentiation. As an application of Green's function and its properties, uniqueness of solution is given for the singular boundary value problem by means of a fixed-point theorem on cones and a mixed monotone method. One concrete example is respectively given to explain the above theorem finally.
作者 于瑶
机构地区 大连教育学院
出处 《科学技术与工程》 2011年第26期6253-6257,共5页 Science Technology and Engineering
关键词 分数阶微分方程 奇异边值问题 唯一解 分数阶格林函数 不动点定理 fractional differential equation singular boundary-value problem unique solution frac- tional Green's function fixed-point theorem
  • 相关文献

参考文献11

  • 1Podlubny I. Fractional differential equations. Mathematics in Science and Engineering, Vol, 198, Academic Press, New Tork/Londin/To- ronto, 1999.
  • 2Samko S G, Kilbas A A, Marichev O I. Fractional integrals and de- rivatives (Theorey and Applications ). Gordon and Breach Science Publishers, Switzerland, 1993.
  • 3Kilbas A A, Trujillo J J. Differential equations of fractional order: methods, results and problems II. Appl Anal, 2002, 81:435-493.
  • 4EI-Sayed A M A. Nonlinear functional differential equations of arbi- trary orders. Nonlinear Anal, 1998; 33:181-186.
  • 5Kilbas A A, Trujillo J J. Differential equations of fractional order: methods, results and problems I. Appl Anal, 2001 ; 78 : 153-192.
  • 6Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation. J Math Anal Appl, 1996; 204:609-- 625.
  • 7苏新卫,穆晓霞.非线性分数阶微分方程系统正解的存在性和唯一性[J].河南师范大学学报(自然科学版),2006,34(4):9-12. 被引量:8
  • 8Yuan Chengjun, Jiang Daqing. Multiplicity and uniqueness of posi- tive solutions for boundary value problem of nonlinear fractional differ- ential equation.
  • 9Bai Zhanbing, Lu Haishen. Positive solutions for boundary value prob- lem of nonlinear fractional differential equation. J Math Anal Appl, 2005 ; 311:495-505.
  • 10Chu Jifeng, O'Regan Donal. Singular integral equations of Hammer- stein type and applications to nonlinear conjugate problems. Taiwan- ese Journal of Mathematics. to appear.

二级参考文献8

  • 1Zhang S Q.The existence of positive solution for a nonlinear fractional differential equation[J].J Math Anal Appl,2000,252:804-812.
  • 2Babakhani A,Daftardar-Gejji V.Existence of positive solutions of nonlinear fractional differ-ential equation[J].J Math Anal Appl,2003,278:434-442.
  • 3Daftardar-Gejji V.Positive solutions of a system of non-autonomous fractional differential equations[J].J Math Anal Appl,2005,302:56-64.
  • 4Bai C Z,Fang J X.The existence of positive solutions for a singular coupled system of nonli-near fractional differential equations[J].Appl Math Compution,2004,150:611-621.
  • 5Miller K S,Ross B.An Introduction to the Fractional Calculus and Fractional Differential Eq-uations[M].New York:Wiley,1993.
  • 6Guu Sy-Ming.On some coupled quasi-fixed points theorems[J].J Math Anal Appl,1996,204:444-450.
  • 7Zhang Z T.New fixed point theorems of mixed monotone operators and applications[J].J Math Anal Appl,1996,204:307-319.
  • 8Delbosco D,Rodino L.Existence and uniqueness for a nonlinear fractional differential equati-on[J].J Math Anal Appl,1996,204:609-625.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部