期刊文献+

使用稠密SIFT特征表达目标的跟踪方法(英文) 被引量:2

Appearance modeling using dense SIFT features for object tracking
下载PDF
导出
摘要 提出了一种使用稠密SIFT特征进行目标跟踪的算法。该算法首先将表达目标的矩形区域分成相同大小的矩形块,计算每一个小块的SIFT特征,再对各个小块的稠密SIFT特征在中心位置进行采样,建模目标的表达。然后度量两个图像区域的不相似性,先计算两个区域对应小块的Bhattacharyya距离,再对各距离加权求和作为两个区域间的距离。因为目标所在区域靠近边缘的部分可能受到背景像素的影响,而区域的内部则更一致,所以越靠近区域中心权函数的值越大。最后提出了能适应目标尺度变化的跟踪算法。实验表明,本算法具有良好的性能。 An object tracking method using dense SIFT features is introduced.It is described the object by a rectangle region that is divided into small uniform image patches.For every patch we compute the SIFT feature for characterizing its local characteristics.The object appearance can thus be modeled by dense SIFT features uniformly-sampled on the patch centers.By using the Bhattacharyya distance to measure the dissimilarity between two corresponding patches,we define the distance between two image regions as the weighted sum of the distances of all the corresponding patch pairs.The weighting function is introduced for emphasizing the patches near the region center,because the outer part of the region may be corrupted by background pixels while the inner part is more consistent.Finally,it is developed the tracking algorithm that can adapt to object size change.Experiments show the effectiveness of the proposed method.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2011年第4期571-576,共6页 Journal of Natural Science of Heilongjiang University
基金 Supported by the National Natural Science Foundation of China(60973080,60673110) the Program for NewCentury Excellent Talents in University from Chinese Ministry of Education(NCET-10-0151) the Key Project by Chinese Ministry of Education(210063) the Program for NewCentury Excellent Talents of Heilongjiang Province(1153-NCET-002) the High-level professionals(innovative teams)of Heilongjiang University(Hdtd2010-07)
关键词 目标跟踪 SIFT特征 BHATTACHARYYA距离 object tracking SIFT bhattacharyya distance
  • 相关文献

参考文献16

  • 1YILMAZ A, JAVED O, SHAH M. Object tracking: a survey [J]. ACM Computing Surveys, 2006, 38(4) : 13.
  • 2ELGAMMAL A, DURAISWAMI R, DAVIS L. Probabilistic tracking in joint feature - spatial spaces [ C]. IEEE Conference Computer Vision and Pattern Recognition. Wisconsin : IEEE Computer Society Press, 2003 : 781 - 788.
  • 3COMANICIU D, RAMESH V, MEER P. Real - time tracking of non - rigid objects using mean shift [ C]. IEEE Conference Computer Vision and Pattern Recognition. Hilton : IEEE Computer Society Press, 2000 : 142 - 149.
  • 4HAN B H, DAVIS L S. On -line density -based appearance modeling for object tracking [ C ]. IEEE International Conference on Computer Vi- sion. San Diego : IEEE Computer Society Press, 2005 : 1492 - 1499.
  • 5HORN B K P, SCHUNCK B G. Determining optical flow[ J]. Artificial Intelligence, 1981, 17 : 185 - 203.
  • 6PARAGIOS N, DERICHE R. Geodesic active regions and level set methods for motion estimation and tracking [ J ]. Computer Vision and Image Understanding, 2005, 97 (3) : 259 - 282.
  • 7HEIKKILA M, PIETIKAINEN M. A texture-based method for modeling the background and detecting moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28:657 -662.
  • 8BROX T, ROUSSON M, DERICHE R, et al. Colour, texture, and motion in level set based segmentation and tracking [ J~. Image Vision Com- puting, 2010, 28 : 376 - 390.
  • 9LOWED G. Distinctive image features from scale - invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60 (2) : 91 - 110.
  • 10JURIE F, TRIGGS B. Creating efficient codebooks for visual recognition [ C ]. IEEE International Conferemce on Computer Vision. IEEE Com- puter Society Press, 2005: 604- 610.

同被引文献20

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部