期刊文献+

求解石油生产过程设定点优化的进化算法 被引量:1

Evolutionary algorithm for set point optimization of oil production process
下载PDF
导出
摘要 引言石油生产过程与任何输入输出系统一样,长期以来积累了其注水井的注入率和生产井的产出率等丰富历史数据,通过对这些数据的分析,可以得到有关各注水井和各生产井的连通性信息,实时优化各注水井的最优注入率和各生产井的最优产出率,并及时调整各注入井和各生产井对应控制系统的设定值,可使石油开采过程保持在最优工况下运行‘。引。 A capacitance model and a steady-state model of oil production process were established based on the historical data accumulated during oil production. A set point optimization problem was formulated based on the proposed model of capacitance and oil production process by minimizing production cost or maximizing profits. A multi-objective constrained optimization evolutionary algorithm based on dynamical selection and replacement strategy was proposed for solving the set point optimization problem of oil production process. The constrained optimization problem was converted into a multi-objective optimization problem with two objectives. During the evolution process, the algorithm was based on multi-objective optimization technique, where the initial population was divided into two sets. A non-dominated individual's conservation bias strategy was used to keep a specific number of infeasible solutions in each generation. The randomly selected individuals in Pareto set were replaced by the remaining non-dominated individuals. Numerical simulation was made to verify the proposed algorithm using a set of data obtained from a heterogeneous reservoir Synfield.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第10期2854-2860,共7页 CIESC Journal
基金 国家自然科学基金项目(60874070,61074069) 留学回国人员科研启动基金~~
关键词 石油生产过程 设定点优化 进化算法 多目标 oil production process set point optimization evolutionary algorithm multi-objective
  • 相关文献

参考文献15

  • 1Echeverria C D, Isehor O J, Durlofsky L J. Application of derivative-free methodologies to generally constrained oil production optimization problem [J]. Procedia Computer Science, 2010,1 (7): 1295-1304.
  • 2LiangXiming(梁昔明) LiShanchun(李山春) LongWen(龙文).Net point optimization model and algorithm for oil production process .控制理论与应州,2010,26(12):1865-1870.
  • 3Liang X M. A simple model to infer interwell connectivity only from well-rate fluctuations in waterfloods [J]. Journal of Petroleum Science and Engineering, 2010, 70 (1/2) : 35-43.
  • 4Yousef A A, Gentil P H, Jenscn J L, et al. A capacitance model to infer interwell connectivity from production and injection rate fluctuations [J]. SPE Reservoir Evaluation & Engineering, 2006, 9 (6): 630-646.
  • 5Albertoni A, Lake L W. Inferring connectivity only from well-rate fluctuations in waterfloods [J]. Journal of SPE Reservoir Evaluation and Engineering, 2003, 6:6-16.
  • 6贺益君,陈德钊.连续约束蚁群优化算法的构建及其在丁烯烷化过程中的应用[J].化工学报,2005,56(9):1708-1713. 被引量:12
  • 7Coello C C A. Constrained bundling using an evolutionary multi-objective optimization technique [J]. Civil Engineering and Environmental Systems, 2000, 17 (4): 319-346.
  • 8Runarsson T P, Yao X. Search biases in constrained evolutionary optimization [J]. IEEE Transactions on System, Man and Cybernetics, 2005, 35 (2) : 233-243.
  • 9Wang Y, Cai Z X, Zhou Y R, et al. An adaptive trade-off model for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12 (1) : 80-92.
  • 10LongWen(龙文) LiangXiming(粱昔明) QinHaoyu(秦浩宇).Multi-objective constrained optimization evolutionary algorithm based on dynamic selection and replacement strategy .小型微型计算机系统,2010,31(12):1865-1869.

二级参考文献13

  • 1Coello Coello C A.Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering,2002,191:1245-1287.
  • 2Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies.In:Proc. of 1st European Conf. Artificial Life. Pans.France:Elsevier,1991.134-142.
  • 3Luca M, Gambardella M Dorigo. Ant-Q: an reinforcement learning approach to the traveling salesman problem.In: Proc. of 12th Machine Learning Conf.France: Morgan Kaufmann,1995.252-260.
  • 4Kindt V T,Monmarche N,Tercinet F,Laügt D.An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem.European Journal of Operational Research,2002,142(2):250-257.
  • 5Yu I K,Song Y H.A novel short-term generation scheduling technique of thermal units using ant colony search algorithms.International Journal of Electrical Power and Energy Systems,2001,23(6):471-479.
  • 6Jayaraman V K,Kulkarni B D,Karale S,Shelokar P.Ant colony framework for optimal design and scheduling of batch plants.Computers and Chemical Engineering,2000,24:1901-1912.
  • 7Beckers R,Goss S,Deneubourg J L,Pasteels J M.Colony size, communication and ant foraging strategy.Psyche,1989,96:239-256.
  • 8Wright J A,Farmani R.Genetic algorithms: A fitness formulation for constrained minimization.In: Proceedings of the Genetic and Evolutionary Computation Conference-GECCO.Morgan Kaufmann, San Francisco, CA:2001.725-732.
  • 9Koziel S,Michalewicz Z.Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization.Evolutionary Computation,1999,7(1):19-44.
  • 10Barbosa H J C,Lemonge A C C.A new adaptive penalty scheme for genetic algorithms.Information Sciences,2003,156:215-251.

共引文献11

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部