期刊文献+

不同管长条件下连通容器预混气体泄爆实验 被引量:14

Experimental premixed flammable gas explosion venting in linked vessels with different pipe length
下载PDF
导出
摘要 通过容器与管道的连接组合,改变管道长度,开展不同管道长度的连通容器预混气体等容爆炸与泄爆实验,分析在密闭爆炸与相同泄爆面积条件下,管道长度的变化对连通容器中火焰传播与容器内压力的影响。实验结果表明:火焰在管道中加速传播,随管道长度的增加,传播速率加快;无论是密闭爆炸或是泄爆,连通条件下容器的最大压力上升速率均高于单个容器的情况;连通容器等容爆炸时,传爆容器的压力峰值随管长的增加而增加;泄爆时,传爆容器的泄爆压力峰值超过其单容器泄爆的压力峰值,特别是传爆容器为小容器时,压力峰值更高;随管长的变化情况,与相应密闭条件下的等容爆炸压力密切相关,但变化趋势不完全一致,受容器泄爆面积、火焰传播等多种因素的影响。 Premixed flammable gas explosion experiment was carried out in both closed and vented vessels linked with pipes of different lengths. The effects of pipe length on flame propagation and fluid field pressure in linked vessels were measured for both closed and vented explosion with the same areas. The results show that the propagation speed of flame accelerates and increases with the increasing of pipe length. The speed is less for vented vessel than closed one because of weakening effect of venting on pressure wave. Peak pressure of second vessel ascends with the increasing of pipe length for iso-volume explosion in linked vessels. For venting explosion process peak pressure in vented vessel is close to that of closed explosion, and larger than that in both single vessel and first vessel, and its change trend with the length of connecting pipe is affected by pressure of iso-volume explosion at closed conditions, the vessel area of venting explosion, flame propagation and so on.
出处 《化工学报》 EI CAS CSCD 北大核心 2011年第10期2969-2973,共5页 CIESC Journal
基金 国家自然科学基金项目(20976081 50904037) 江苏省高校自然科学基金项目(10KJB620001)~~
关键词 连通容器 气体泄爆 管道长度 火焰传播速率 爆炸强度 linked vessels gas explosion venting pipe length flame propagation rate explosion intensity
  • 相关文献

参考文献16

  • 1Razus D M, Krause U. Comparison of empirical and semi- empirical calculation methods for venting of gas explosions [J]. Fire Safety Journal, 2001, 36:1-23.
  • 2Bradley D, Mitcheson A. The venting of gaseous explosions in spherical vessels ( Ⅰ ): Theory [J]. Combustion and Flame, 1978 (32) : 221-236.
  • 3Bradley D, Miteheson A. The venting of gaseous explosions in spherical vessels ( Ⅱ ): Theory and experiment [J]. Combustion and Flame, 1978 (32) : 237-255.
  • 4Chippett S. Modeling of vented deflagrations [J]. Combustion and Flame, 1984, 55 (2): 127-140.
  • 5Canu P, Rota R, Carra S. Venting gas deflagrations a detailed mathematical model tuned on a large set of experimental data [J]. Combustion and Flame, 1990, 80 (1): 49-64.
  • 6Merex W P M. Modeling and experimental research into gas explosions [J]. Loss Prevention and Safety Promotion in the Process Industries, 1995 (1): 333-347.
  • 7Singh J. Gas explosions in inter-connected-vessels: pressure piling//IChemE Hazards Ⅻ Symposium [C]. UMIST, Manchester, UK 1994:19-21.
  • 8Phylaktou H, Andrews G E. Gas explosions in linked vessels [J]. Journal of Loss Prevention in the Process Industries, 1993, 6 (1):15-19.
  • 9Molkov V, Dobashi R, Suzuki M, etal. Modeling of vented hydrogen-air deflagrations and correlations for vent sizing [J]. Journal of Loss Prevention in the Process Industries, 1999, 12 : 147-156.
  • 10Molkov V, Dobashi R, Suzuki M, Hirano T. Venting of deflagrations: hydrocarbon air and hydrogen air systems [J]. Journal of Loss Prevention in the Process Industries,2000, 13: 397-409.

二级参考文献26

共引文献31

同被引文献119

引证文献14

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部