期刊文献+

基于独立成分分析算法的纺纱锭子噪声测试 被引量:2

Testing spinning spindle noise based on independent component analysis algorithm
下载PDF
导出
摘要 纺纱锭子性能的优劣对生产效率和纱线质量具有决定性的影响。以纺纱锭子运转中的噪声信号和驱动电动机单独运转的噪声信号为考察对象,对纺纱锭子运转过程进行分析。利用频谱分析和快速独立成分分析(FastICA)算法将纺纱锭子运转噪声信号的分离信号与驱动电动机单独运转的噪声信号主频率进行对比,38.88%分离主频率与驱动电机单独运转的噪声主频率一致,44.44%分离主频率与驱动电动机单独运转的噪声主频率相近,最小误差为0.05%。实验与分析结果表明,FastICA算法用于噪声源信号主频率分离的有效性和正确性。 The performance of spinning spindles has decisive influence on production efficiency and yarn quality.The goal of this paper was to investigate the noise signals generated by the spinning spindle and driving motor during operation.The spectrum analysis method and fast independent component analysis algorithm(Fast ICA) were used to compare the noise signal frequency separated from the running spindle noise with the main frequency of the motor running noise,and the results indicated that 38.88% of the noise signal frequency separated from the running spindle noise was identical with the main frequency of the motor running noise,and 44.44% of the former showed close to the later,with the minimum error 0.05%.Experimental and analytical results show the effectiveness and correctness of FastICA algorithm in use for separation of the main frequency of noise source signals.
出处 《纺织学报》 EI CAS CSCD 北大核心 2011年第9期119-124,共6页 Journal of Textile Research
基金 上海市重点学科建设资助项目(B602)
关键词 纺纱锭子 FASTICA算法 噪声 信号分离 spinning spindle FastICA algorithm noise signal separation
  • 相关文献

参考文献8

  • 1赵建明.牵伸加捻锭子的噪声分析与降低噪声的对策探讨[J].纺织机械,1999(4):5-6. 被引量:3
  • 2ROBERTS Stephen, EVERSON Richard. Independent Component Analysis : Principles and Practice[ M ]. New York : Cambridge University Press, 2001:71 - 95.
  • 3LEWICKI M S, SEJNOWSKI T J. Learning overcomplete representations [ J ]. Neural Computation, 2000, 12(2) :330 -375.
  • 4HYVARINEN Aapo, KARHUNEN Juha, OJA Erkki. Independent Component Analysis[ M ]. New York : John Wiley & Sons, Inc. , 2001:147 - 164.
  • 5CICHOCKI A, AMARI S, SIWEK K, et al. ICALAB - MATLAB Toolbox Ver. 3 for signal processing [ CP/ OL]. 2007http://www. bsp. brain, riken, go. jp/ ICALAB/.
  • 6CICHOCKI Andrzej, AMAR1 Shun-iehi. Adaptive Blind Signal and Image Processing [ M ]. New York: John Wiley & Sons, Inc. , 2002:292 -344.
  • 7LI Zhinong, HE Yongyong, CHU Fulei. Application of the blind source separation in machine fault diagnosis: a review and prospect[ J]. Mechanical Systems and Signal Processing, 2005, 19(1) :1 -24.
  • 8AAPO H, JOA E. Independent component analysis algorithms and applications[ J]. Neural Networks, 2000, 13(4) :411 -430.

二级参考文献1

  • 1胡宗武.工程振动分析基础[M].上海交通大学出版社,1986..

共引文献2

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部