摘要
针对潜艇用大容量蓄电池充放电模型建立过程中试验样本少、影响因素多、解耦难等特点,提出从研究蓄电池充放电外特性出发,利用改进神经网络算法结合黄金分割算法、线性模拟等技术来尝试解决蓄电池充放电模型建立的难题,仿真试验表明,此种方法能满足工程应用的实时性要求,精度在0.4%以内.
In view of the characteristics of a submarine high-capacity battery, such as the experimentation swatches absence, influence factors legion, and decoupling difficulty, at the same time based on the external characteristic of the battery, an integrated algorithm in which all of the improved back-propagation neural network method, golden cut algorithm, and the linear simulation technology are used is brought forward for the modeling of the submarine battery dynamic process. Simulation experimentation results show that the real-time performance can be fulfilled well, and a comparatively high precision can be met.
出处
《北京工业大学学报》
EI
CAS
CSCD
北大核心
2011年第9期1325-1329,共5页
Journal of Beijing University of Technology
基金
国防技术研究资助项目(HJ5022008095)
关键词
蓄电池
充放电
计算机仿真
神经网络
battery
charge-discharge, computer simulation
neural networks