期刊文献+

锥扫型光学传感器像平面多目标轨迹跟踪 被引量:1

Tracking multi-target on image plane for the cone-scanning optical sensor
下载PDF
导出
摘要 积分概率多假设跟踪(IPMHT)是一种基于期望极大化(EM)的准最优贝叶斯多目标迭代跟踪算法,研究了该算法在锥扫型光学传感器像平面多目标轨迹跟踪中的问题。为提高算法的跟踪性能和计算效率,利用逻辑概率数据关联滤波(PDAF)方法进行目标初始状态估计,并利用目标幅度信息和波门技术对IPMHT进行优化。针对锥扫型传感器非线性观测下的多目标跟踪,将扩展无味卡尔曼滤波(AUKF)与优化的IPMHT算法相结合,实现像平面多目标轨迹的起始、维持和终结。蒙特卡洛仿真实验表明,该算法成功地解决了锥扫型传感器的像平面多目标轨迹跟踪问题,在提高目标跟踪性能的同时改善了计算效率。 Integrated probabilistic multi-hypothesis tracking(IPMHT) for multi-target was an iterative suboptimal Bayesian method based on exception maximum(EM),which was studied for tracking targets on image plane for the cone-scanning optical sensor.In order to improve the algorithm performance and efficiency,probabilistic data association(PDAF) under logical ruler was utilized to estimate the target initial state and IPMHT was optimized as to the target intensity and association gate.To track multi-target under nonlinear observation of the cone-scanning sensor,augmented unscented Kalman filter(AUKF) was introduced to combine the optimized IPMHT for the multi-target initiation,maintenance and termination.As the Monte Carlo experiments show,the presented algorithm successfully tracks the multi-target with better tracking performance and efficiency as well.
出处 《通信学报》 EI CSCD 北大核心 2011年第9期123-128,共6页 Journal on Communications
关键词 多目标跟踪 积分概率多假设跟踪 期望极大化 扩展无味卡尔曼滤波 multi-target tracking integrated probabilistic multi-hypothesis tracking exception maximum augmented unscented Kalman filter
  • 相关文献

参考文献11

  • 1OH S, RUSSELL S, SASTRY S. Markov chain Monte Carlo data association for general multi-target tracking problems[A]. Proc of the IEEE Conference on Decision and Control [C]. Paradise Island: Bahams, 2004.
  • 2VERMAAK J, GODSILL S J, PEREZ P. Monte Carlo filtering for multi-target tracking and data association[J]. IEEE Transaction on Aerospace and Electronic Systems, 2005, 41(1): 309-322.
  • 3MORI S, CHONG C. Evaluation of a posteriori probabilities of multi-frame data association hypothesis[A]. Signal and Data Processing of Small Targets, San Diego: Proc of SPIE [C]. 2007.
  • 4OH S, RUSSELL S, SASTRY S. Markov chain monte carlo data association for mulri-target tracking[J]. IEEE Transaction on Automarie Control, 2009, 54(3): 481-497.
  • 5STREIT R L, LUGINBUHL T E. Probabilistic Multi-hypothesis Tracking[R]. NUWC, Newport RI, I995.
  • 6DAVEY S I,GRAY D A. Integrated track maintenance for the PMHT via the hysteresis model[J], IEEE Transaction on Aerospace and Electronie System, 2007, 43(1):93-111.
  • 7MUSICKI D, WANG X Z. Track management and PMHT[A]. The 10th International Conference on Information Fusion[C]. Quebec, Canada, 2007.
  • 8KEIL K H, HUPFER W. Simulation of signal and data processing for a pair of GEO IR sensors[A]. Signal and Data Processing of Small Targets [C]. San Diego, 2007.
  • 9LI N, LI X R. Tracker design based on target perceivability[J]. IEEE Transaction on Aerospace and Electronic system, 2001, 37(1): 214- 225.
  • 10BARSHALOM Y, LI. X R Multitarget-Multisensor Tracking: Principles and Techniques[M]. Storrs, CT:YBS, 1995.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部