期刊文献+

TWO-AGENT PARETO OPTIMAL COOPERATIVE INVESTMENT IN INCOMPLETE MARKET:AN EQUIVALENT CHARACTERIZATION

TWO-AGENT PARETO OPTIMAL COOPERATIVE INVESTMENT IN INCOMPLETE MARKET:AN EQUIVALENT CHARACTERIZATION
原文传递
导出
摘要 This paper studies the following cooperative investment game with two agents. At the start of the game, both the agents' capital are collected. The total capital are then invested according to a certain trading strategy. At a certain time To one agent quits the cooperation and they divide the wealth among themselves. During the remaining period [To, T], the other agent invests his/her capital following a possibly different trading strategy. By stochastic optimization method combined with the theory of Backward Stochastic Differential Equations (BSDEs, for short), we give an equivalent characterization of the Pareto optimal cooperative strategies.
作者 Qing ZHOU
机构地区 School of Science
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第4期701-710,共10页 系统科学与复杂性学报(英文版)
基金 supported by the Natural Science Foundation of China under Grant Nos.11001029 and 10971220 the Fundamental Research Funds for the Central Universities(BUPT2009RC0705)
关键词 Backward stochastic differential equation cooperative investment incomplete market Pareto optimum stochastic utility. 资本投资 帕累托最优 代理人 等价刻画 合作 倒向随机微分方程 不完全 市场
  • 相关文献

参考文献31

  • 1J. C. Cox and C. F. Huang, Optimal consumption and portfolio policies when asset prices follow a diffusion process, J. Econ. Theory, 1989, 49: 33-83.
  • 2J. C. Cox and C. F. Huang, A variational problem arising in financial economics, J. Math. Econ., 1991, 20: 465-487.
  • 3I. Karatzas, J. P. Lehoczky, and S. E. Shreve, Optimal portfolio and consumption decision for a small investor on a finite horizon, SIAM J. Contr. Optim., 1987, 25: 1557-1586.
  • 4S. R. Pliska, A stochastic calculus model of continuous trading: Optimal portfolio, Math. Oper. Res., 1986, 11: 371-382.
  • 5H. He and N. D. Pearson, Consumption and portfolio policies with incomplete markets and short- sale constraints: The finite-dimensional case, Math. Finance, 1991, I: i-i0.
  • 61t. He and N. D. Pearson, Consumption and portfolio policies with incomplete markets and short- sale constraints: The infinite-dimensional case, J. Econ. Theory, 1991, 54: 259-304.
  • 7I. Karatzas, J. P. Lehoczky, S. E. Shreve, and G. L. Xu, Martingale and duality methods for utility maximization in incomplete markets, SIAM J. Contr. Optim., 1991, 29: 702-730.
  • 8D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets, Ann. Appl. Probab., 1999, 9: 904-950.
  • 9D. Kramkov and W. Schachermayer, Necessary and sufficient conditions in the problem of optimal investment in incomplete markets, Ann. Appl. Probab., 2003, 13(4): 1504 1516.
  • 10J. M. Xia, Multi-agent investment in incomplete markets, Finance and Stochastics, 2004, 8: 241- 259.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部