OBTAINING EXACT INTERPOLATION MULTIVARIATE POLYNOMIAL BY APPROXIMATION
OBTAINING EXACT INTERPOLATION MULTIVARIATE POLYNOMIAL BY APPROXIMATION
摘要
In some fields such as Mathematics Mechanization, automated reasoning and Trustworthy Computing, etc., exact results are needed. Symbolic computations are used to obtain the exact results. Symbolic computations are of high complexity. In order to improve the situation, exact interpolating methods are often proposed for the exact results and approximate interpolating methods for the ap- proximate ones. In this paper, the authors study how to obtain exact interpolation polynomial with rational coefficients by approximate interpolating methods.
基金
supported by China 973 Frogram 2011CB302402
the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-S02)
the National Natural Science Foundation of China(10771205)
the West Light Foundation of the Chinese Academy of Sciences
参考文献28
-
1R. M. Corless, et al., Towards factoring bivariate approximate polynomials, Proc. ISSAC, ACM Press, New York, 2001.
-
2Y. Huang, et al., Pseudofactors of multivariate polynomials, Proc. ISSAC, ACM Press, New York, 2000.
-
3Z. Mou-Yan and R. Unbehausen, Approximate factorization of multivariable polynomials, Signal Proces., 1988, 14: 141-152.
-
4T. Sasaki, et al., Approximate factorization of multivariate polynomials and absolute irreducibility testing, Japan J. Indust. Appl. Math., 1991, 8: 357-375.
-
5T. Sasaki, Approximate multivariate polynomial factorization based on zero-sum relations, Proc. ISSAC, ACM Press, New York, 2001.
-
6T. Sasaki, T. Saito, and T. Hilano, Analysis of approximate factorization algorithm, Japan J. Indust. Appl. Math., 1992, 9: 351-368.
-
7R. M. Corless, et al., The singular value decomposition for polynomial systems, Proc. ISSAC, ACM Press, New York, 1995.
-
8B. Beckermann and G. Labahn, When are two numerical polynomials relatively prime? J. Symbolic Comput., 1998, 26: 677-689.
-
9N. Karmarka and Y. N. Lakshman, Approximate polynomial greatest common divisors and nearest singular polynomials, Proc. ISSAC, ACM Press, New York, 1996.
-
10R. M. Corless, M. W. Stephen, and L. H. Zhi, QR factoring to compute the gcd of univariate approximate polynomials, IEEE Transactions on Signal Processing, 2004, 52(12): 3394-3402.
-
1张红锋.构造法在微积分中的应用研究[J].价值工程,2015,34(8):326-327. 被引量:1
-
2陈述,李清都,胡诗沂.动力系统可靠计算研究综述[J].计算机应用,2010,30(12):223-226.
-
3刘永平,许贵桥.Some extremal properties of multivariate polynomial splines in the metric L_p(R^d)[J].Science China Mathematics,2001,44(8):961-968.
-
4秦良娟.证据理论在复杂系统可靠性评价中的应用[J].西安交通大学学报,1998,32(8):100-103. 被引量:6
-
5Li Jiakai,Zhuang Guozhong.CONVERGENCE IN MEASURE OF MULTIVARIATE PADE APPROXIMANTS[J].Analysis in Theory and Applications,1993,9(1):99-106.
-
6许勇,董文才,肖汶斌.Study on Far Field Wave Patterns and Their Characteristics of Havelock Form Green Function[J].China Ocean Engineering,2013,27(3):283-298. 被引量:3
-
7柯资能.邵雍观物论与电、弱、强相互作用耦合常数试解[J].自然杂志,2001,23(2):117-121. 被引量:1
-
8孙广才.《易学启蒙》中的数学史料与数学思想[J].宝鸡文理学院学报(自然科学版),2003,23(4):262-265. 被引量:2
-
9陈益武,徐勇,蒋志良,相里梅琴.建筑能耗分析用室外气象数学模型的建立[J].建筑热能通风空调,2005,24(3):60-64. 被引量:2
-
10柯资能.北宋邵雍数学学派与几个无量纲常数诠释[J].中国科学技术大学学报,1999,29(3):302-310. 被引量:4