期刊文献+

OBTAINING EXACT INTERPOLATION MULTIVARIATE POLYNOMIAL BY APPROXIMATION

OBTAINING EXACT INTERPOLATION MULTIVARIATE POLYNOMIAL BY APPROXIMATION
原文传递
导出
摘要 In some fields such as Mathematics Mechanization, automated reasoning and Trustworthy Computing, etc., exact results are needed. Symbolic computations are used to obtain the exact results. Symbolic computations are of high complexity. In order to improve the situation, exact interpolating methods are often proposed for the exact results and approximate interpolating methods for the ap- proximate ones. In this paper, the authors study how to obtain exact interpolation polynomial with rational coefficients by approximate interpolating methods.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第4期803-815,共13页 系统科学与复杂性学报(英文版)
基金 supported by China 973 Frogram 2011CB302402 the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-S02) the National Natural Science Foundation of China(10771205) the West Light Foundation of the Chinese Academy of Sciences
关键词 Continued fraction multivariate interpolation numerical approximate computation symbolic-numerical computation Vandermonde determinant. 插值方法 多元多项式 符号计算 数学机械化 计算复杂度 自动推理
  • 相关文献

参考文献28

  • 1R. M. Corless, et al., Towards factoring bivariate approximate polynomials, Proc. ISSAC, ACM Press, New York, 2001.
  • 2Y. Huang, et al., Pseudofactors of multivariate polynomials, Proc. ISSAC, ACM Press, New York, 2000.
  • 3Z. Mou-Yan and R. Unbehausen, Approximate factorization of multivariable polynomials, Signal Proces., 1988, 14: 141-152.
  • 4T. Sasaki, et al., Approximate factorization of multivariate polynomials and absolute irreducibility testing, Japan J. Indust. Appl. Math., 1991, 8: 357-375.
  • 5T. Sasaki, Approximate multivariate polynomial factorization based on zero-sum relations, Proc. ISSAC, ACM Press, New York, 2001.
  • 6T. Sasaki, T. Saito, and T. Hilano, Analysis of approximate factorization algorithm, Japan J. Indust. Appl. Math., 1992, 9: 351-368.
  • 7R. M. Corless, et al., The singular value decomposition for polynomial systems, Proc. ISSAC, ACM Press, New York, 1995.
  • 8B. Beckermann and G. Labahn, When are two numerical polynomials relatively prime? J. Symbolic Comput., 1998, 26: 677-689.
  • 9N. Karmarka and Y. N. Lakshman, Approximate polynomial greatest common divisors and nearest singular polynomials, Proc. ISSAC, ACM Press, New York, 1996.
  • 10R. M. Corless, M. W. Stephen, and L. H. Zhi, QR factoring to compute the gcd of univariate approximate polynomials, IEEE Transactions on Signal Processing, 2004, 52(12): 3394-3402.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部