期刊文献+

基于Turán数的广义多图Ramsey数上下界(英文) 被引量:1

Upper and Lower Bounds for Generalized Multigraph Ramsey Numbers Based on Turán Numbers
下载PDF
导出
摘要 将多图Ramsey数推广为广义多图Ramsey数.利用完全图的Turán数,给出一些多图Ramsey数的上界和构造性下界,进而确定出它们的准确值. Multigraph Ramsey numbers are generalized to generalized multigraph Ramsey numbers.Upper bounds and constructive lower bounds for some multigraph Ramsey numbers are obtained based on the Turán numbers for complete graphs,by which their values are obtained.
出处 《广西科学》 CAS 2011年第3期187-188,共2页 Guangxi Sciences
基金 广西自然科学基金项目(2011GXNSFA018142)资助
关键词 多图 RAMSEY数 Turán数 multigraph Ramsey number Turán number
  • 相关文献

参考文献4

  • 1Xu X,Shao Z,Su W,et al. Set-coloring of edges and multigraph Ramsey numbers[J]. Graphs and Combinati- orics, 2009,25 : 863-870.
  • 2Harary F, Schwenk A J. Generalized Ramsey theory of graphs Ⅶ Ramsey numbers for multigraphs and net- works[J]. Networks, 1978,8(3) : 209-216.
  • 3Bondy J A, Murty U S R. Graph theory with applications [ M]. New York: Elsevier science publishing co, inc, 1976.
  • 4Turan P. On an extremal problem in graph theory[J]. Mat Fiz Lapok,1941,48:436-452.

同被引文献10

  • 1Kneser M. Aufgabe 300[J]. Jahresber Deutsch Math- verein, 1955(58) :27.
  • 2Lovasz L. Kneser's conjecture, chromatic number, and homotopy[J]. Journal of Combinatorial Theory: Series A, 1978,25 : 319-324.
  • 3Bdrdny I. A short proof of Kneser's conjecture[J]. Jour- nal of Combinatorial Theory: Series A, 1978, 25: 325- 326.
  • 4Matousek J. A combinatorial proof of Kneser's conjectu- re[J]. Combinatorica, 2004,24 ( 1 ) : 163-170.
  • 5Ziegler G M. Generalized Kneser coloring theorems with combinatorial proofs[J]. Invent Math, 2002,147; 671- 691.
  • 6Araujo G,Dumitrescu A, Hurtado F. et al. On the chro- matic number of some geometric type Kneser graphs [J]. Computational Geometry, 2005,32 : 59-69.
  • 7Kim S J, Nakprasit K. On the chromatic number of the square of the Kneser graph K(k+- 1,k) [J]. Graphs Combin, 2004,20 : 70-90.
  • 8Chen J,Lih K,Wu J. Coloring the square of the Kneser graphKG(2k + 1 ,k) and the Sehrijver graph SG(2k + 2, k) [J]. Discrete Applied Mathematics, 2009,157: 170- 176.
  • 9Khodkar A, Leach D. The Chromatic Number of K2 (9, 4) is 11 [J].Journal of Combinatorial Mathematics and Combinatorial Computing, 2009,70 : 217-220.
  • 10Blochliger I, Zufferey N. A graph coloring heuristic u- sing partial solutions and a reactive tabu scheme[J]. Computers & Operations Research, 2008,35 ( 2 ) : 960- 975.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部