摘要
本文讨论了中子迁移理论中的边界函数的一些性质。主要证明了对固定的是定义在凸集U上关于的凹函数;并且当U为R^3中的二维微分流形时,关于在intU上是连续可微的。
Some properties of the boundary function S0 ( r ,Ω) in the theory of neutron transportation are discussed in this paper. It is also proved that
with fixed is a concave function about r defined on convex set U and S0 ( r ,Ω) abont r defined on int U is continuously differe-ntiable when 0U is two-dimensional differential manifold in R3.
出处
《信阳师范学院学报(自然科学版)》
CAS
1990年第4期307-313,共7页
Journal of Xinyang Normal University(Natural Science Edition)
关键词
凸集
边界函数
凹函数
微分流形
convex set, boundary function,concave function, differential manifold