期刊文献+

脂肪族醇的酸碱离解常数(pKa)的预测研究 被引量:1

Prediction of aliphatic alcohol acid-base dissociation constants(pKa)
原文传递
导出
摘要 酸碱离解常数(pKa)在理解受体与药物反应和药物如何选择辅料上起着重要的作用。因此,在药物前期的开发中,能有效地预测pKa值可很好地降低开发成本,降低资源消耗。本文通过运用定量构效关系的方法(QSAR)对脂肪醇的数据库展开研究,以进行pKa值的预测。一共选用了253种各类描述符,包含原子键的性质的描述符48个,分子整体描述符205个,其中重点描述符为原子键的性质类描述符。采取多元线性回归的方法对数据进行研究。该预测模型能取得较好的效果,可以应用于药物的前期开发中。 The acid-base dissociation constants(pKa) plays an important role in understanding reaction with receptor amd drug,selection of drug excipient.So in the early development of the drug,effective prediction of pKa value can reduce development costs,consumption of resources.The pKa value of aliphatic alcohols was predicted using the method of quantitative structure activity relationship(QSAR).It chooses the 253 descriptors, including 48 properties descriptor of the atom bond,205 molecular overall descriptor,and key descriptors were descriptor of properties of the atom bond.The date was analyzed by multiple linear regression method in this paper. The prediction model could achieve good results when used to the early development of drugs.
出处 《精细与专用化学品》 CAS 2011年第9期55-57,共3页 Fine and Specialty Chemicals
关键词 pKa预测 多元线性回归 描述符 pKa prediction multiple linear regression(MLR) descriptors
  • 相关文献

参考文献15

  • 1祁正兴.用从头算量化参数预测吡啶类化合物的PKa值[J].青海师专学报,2006,26(5):77-80. 被引量:5
  • 2Hilal S H, Karickhoff S W, Carreira L A. A rigorous test for SPARCs chemical reactivity models: estimation of more than 4300 ionization pKas [J]. Quant Struct-Act Relat, 1995, 14: 348-355.
  • 3Xing L, Glen R C. Novel methods for the predictions of logP, pKa and logD [J]. Chem Inf Comput Sci, 2002, 42:796-805.
  • 4Dixon S L, Jurs P C. Estimation of pKa for organic oxyacids using calculated atomic charges[J]. Comput Chem, 1993, 14: 1460-1467.
  • 5http://www.schrodinger. com (accessed Jun 2010).
  • 6http ://chemsilico. com/CS_ prpKa/PKAhome. html ( accessed Jun 2010).
  • 7http://www.acdlabs. com/products/phys _chem _ lab/pka/ batch. html (accessed Jun 2010).
  • 8阎爱侠,徐姝钰,王志,李嘉轩.基于多元线性回归及支持向量机回归分析对含苯基的羧酸类化合物pKa的预测(英文)[J].计算机与应用化学,2009(12):1559-1562. 被引量:3
  • 9Adam C L, Gordon M C. Predicting pKa [J]. Chem Inf Mod el, (in press).
  • 10Zhan C G. Central [J]. China Normal University, 2003, 27 (3) :364-366.

二级参考文献35

  • 1张士国,杨频.用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系[J].中国腐蚀与防护学报,2004,24(4):240-244. 被引量:41
  • 2Ishihama Y, Nakamura M, Miwa T, Kajima T and Asakawa N. A rapid method for pKa determination of drugs using pressure-assisted capillary electrophoresis with photodiode array detection in drug discovery. J Pharm Sci, 2002, 91:933-942.
  • 3Chaudry U A and Popelier P L A. Estimation of pKa using quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols. J Org Chem, 2004, 69:233-241.
  • 4Tehan B G, Lloyd E J, Wong M-G, Pitt W R, Montana J G, Manallack D T and Gancia E. Estimation of pKa using semicmpirical molecular orbital methods. Part 1: application to phenols and carboxylic acids. Quant Struct -Act Relat, 2002, 21:457-472.
  • 5Tehan B G, Lloyd E J, Wong M G, Pitt W R, Gancia E and Manallack D T. Estimation of pKa using semiempirical molecular orbital methods. Part 2: application to amines, anilines and various nitrogen containing heterocyelic compounds. Quant Struct-Act Relat, 2002, 21:473-485.
  • 6Parthasarathi R, Padmanabhan J, Elango M, Chitra K, Subramanian V and Chattaraj P K. pKa prediction using group philicity. J Phys Chem, A 2006, 110:6540-6544.
  • 7Xing L and Glen R C. Novel methods for the predictions of log P, pKa, and log D. J Chem Inf Comput Sci, 2002, 42:796-805.
  • 8Xing L, Glen R C and Clark R D. Predicting pKa by molecular free structured fingerprints and PLS. J Chem Irff Comput Sci, 2003, 43:870-879.
  • 9Dixon S L and Juts P C. Estimation of pKa for organic oxyacids using calculated atomic charges. J Comput Chem, 1993, 14:1460-1467.
  • 10Zhang J, Kleinoder T and Gasteiger J. Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model, 2006, 46:2256-2266.

共引文献6

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部