期刊文献+

一种改进型CE-ML算法的二维DOA估计

An Improved CE-ML Algorithm of 2-D DOA Estimator
下载PDF
导出
摘要 基于最大似然估计(ML)的阵列测向方法具有测向精度高、可以分辨相干信号等优点,但是因为计算复杂度过高而工程应用受限。针对该问题,利用交叉熵(CE)方法对最大似然估计快速求解,并对初始样本的产生和平滑参数的设置进行了优化,提出改进型CE-ML二维测向算法,最后进行了算法运算量分析和仿真验证。仿真实验表明,在精度相近条件下,改进型的CE-ML算法的迭代次数大约是粒子群算法(PSO)的1/3,大大减少了ML测向的计算量。 The array DOA estimator method of maximum likelihood (ML) has high precision and can resolve the coherent signal. The application of maximum likelihood has been restricted by the computation burden. In order to overcome the problem existing in the majority of solution of maximum likelihood estimation, the cross entropy (CE) method is used. Through the optimization of the smooth parameter and the initial sample, a new improved CE-ML algorithm of 2-D DOA estimator is proposed. Comparing with the PSO (Particle Swarm Optimization) algorithm, simulation results show that the improved CE-ML algorithm performs better, and iteration number of CE-ML algorithm is one-third of PSO algorithm.
出处 《电子信息对抗技术》 2011年第5期1-4,共4页 Electronic Information Warfare Technology
关键词 交叉熵 粒子群 最大似然估计 DOA估计 cross-entropy PSO ML estimator DOA estimator
  • 相关文献

参考文献7

  • 1ZISKIND I, WAX M. Maximum Likelihood Localization of Multiple Sources by Alternating Projection [J]. IEEE Trans on ASSP, 1988,10(36) : 1553 - 1560.
  • 2RUBINSTEIN R Y, KROESE D P. The Cross- Entropy Method[M], Springer, 2004.
  • 3CHEN Y C, SU Y T. Maximum Likelihood DOA Estimation Based on the Cross- Entropy Method[ C]//IEEE Proc of ISIT, Seattle, USA, September 2006: 851- 855.
  • 4CHEN C E, IDRENZELIA F, HUDSON R E, et al. Acoustic Source DOA Estimation Using the Cross-Entropy Method[C]//ICASSP, 2007: 1057- 1050.
  • 5SHI Y, EBERHART R. Empirical Study of Particle Swarm Optimization [ C ]//Proc Of Congress on Computational Intelligence, 1999: 1945- 1950.
  • 6张朝柱,王鑫.一种改进型粒子群优化波达方向估计算法[J].信号处理,2009,25(8):1304-1308. 被引量:4
  • 7顾杰.宽带相控阵测向技术研究[J].电子信息对抗技术,2009,24(5):57-59. 被引量:9

二级参考文献16

  • 1苏晋荣,李兵义,王晓凯.一种利用种群平均信息的粒子群优化算法[J].计算机工程与应用,2007,43(10):58-59. 被引量:18
  • 2Kennedy J, Eberhart R. Particle Swarm Optimization [ C ], Proc. IEEE International Conference on Neural Networks, 1995 : 1942 - 1948.
  • 3Angeline P J. Evolutionary optimization versus particle swarm optimization:philosophy and performance differences[ C] ,Evolutionary Programming, 1998,48( 17 ) : 1956-1959.
  • 4Shi Y, Eberhart R. Empirical study of particle swarm optimization[ C ] , Proc. of Congress on Computational Intelligence, 1999 : 1945-1950.
  • 5Angeline P. Using selection to improve particle swarm optimization [ C ] , Proc. of IJCNNp99,1999 : 84-89.
  • 6Clere M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [ C ], Proc. Of the Congress of Evolutionary Computation, 1999: 1951- 1957.
  • 7Suganthan P. Particle swarm optimizer with neighborhood operator[ C ], Proc. of Congress on Evolutionary Computation, 1999 : 1958-1961.
  • 8Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ C ] , Proc. of the Congress on Evolutionary Computation,2001 : 101-106.
  • 9Van den Bergh F, Engelbrecht A. Using cooperative particle swarm optimization to train product unit neural networks [ C ], Proc. of the third Genetic and Evolutionary computation conference,2001:75-90.
  • 10Natsuki H. Particle swarm optimization with Gaussian mutation[ C ], Proc. of the Congress on Evolutionary Computation,2003 : 72-79.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部