期刊文献+

LS-Relax算法抗诱饵诱偏

Anti-Decoy Using LS-Relax Algorithm
下载PDF
导出
摘要 目标与有源诱饵常处于弹载雷达的同一分辨单元,致使导弹的命中概率大大降低。采用LS-Relax算法在多普勒域、角度域和复幅度域上实现了目标信号参数测量和目标检测,并应用于抗诱饵诱偏中以提高导弹的命中概率。此算法能有效地分辨出同一分辨单元内的多目标,精确地测量出各目标的多普勒频率、角度、幅度和初始相位等信息,以重构出目标或诱饵信号从而达到抑制诱饵诱偏干扰的目的。仿真结果表明,当SNR>15dB,目标测角误差小于0.1°,失调系数小于0.1。由此表明,算法的收敛性较好。 It is a serious problem for the missile-borne radar when targets and active decoys are in the same range-angle resolution cell, which can greatly reduce the fighting efficiency of the missile. The LS-Relax algorithm is utilized, which is achieved to measure parameters and detection on the joint fields of the Doppler-frequency, angle and complex amplitude. Some researches are done on anti-decoy to increase the fighting efficiency. Those parameters, including Doppler-frequencies, angles, amplitudes and phases, are measured one by one to reconstruct the signals of the target and active decoys. Consequently, the active decoying interference is availably suppressed by this method. Simula- tions are given to validate the efficiency of this approach. On the condition of SNR 〉 15dB, the angle measure error of target is less than 0.1 degree, the coefficient of maladjustment is less than 0.1. Those results indicate the LS-Relax algorithm has a good convergence.
出处 《电子信息对抗技术》 2011年第5期10-13,18,共5页 Electronic Information Warfare Technology
关键词 LS-Relax算法 抗诱饵诱偏 弹载雷达 目标分辨 LS-Relax algorithm anti-decoying missile-borne radar target resolution
  • 相关文献

参考文献15

二级参考文献40

  • 1关成斌,陈铁柱,王国宏,车志宇.用不同高度有源诱偏系统对抗ARM[J].雷达科学与技术,2004,2(4):193-197. 被引量:6
  • 2李永祯,王雪松,肖顺平,庄钊文.基于IPPV的真假目标极化鉴别算法[J].现代雷达,2004,26(9):38-42. 被引量:27
  • 3江小平,刘雨,郑木生,王君毅.相干两点源抗反辐射导弹布站仿真与评估[J].现代电子技术,2005,28(21):25-27. 被引量:5
  • 4司锡才 赵建民.宽频带反辐射导弹导引头技术基础[M].哈尔滨工程大学出版社,1996.446-502.
  • 5Dunlop A J AGC Response.自动增益控制响应和目标闪烁[J].现代雷达,1986,(5).
  • 6(苏)瓦金C A 郑同良(译).无线电干扰和无线电技术侦察基础[M].北京:科学出版社,1977..
  • 7[1]Jutten C, Herault J. Blind separation of sources. Part Ⅰ. An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991, 24:1~20.
  • 8[2]Amari S, Cichochi A. Adaptive blind signal processing: neural network approaches [J]. Proc IEEE, 1998, 86(10):2026~2048.
  • 9[3]Cardoso J F. Blind signal separation: statistical principles [J]. Proc IEEE, 1998, 86(10):2009~2025.
  • 10[4]Comon P. Independent component analysis, a new concept?[J]. Signal Processsing, 1992, 36(3):287~314.

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部