期刊文献+

局部颜色模型的交互式Graph-Cut分割算法 被引量:2

Interactive Graph-Cut for image segmentation using local color models
下载PDF
导出
摘要 由于目前大多数交互式Graph-Cut分割算法很难达到精确分割且实时交互的效果.对此,提出一种基于局部颜色模型的改进算法.该算法利用Mean-Shift预分割,建立基于局部颜色模型的交互式分割框架,并将像素级的Graph-Cut算法转化为基于区域的算法进行快速求解.预分割之后的区域保持了原有图像的结构,不仅提高了采用局部颜色模型估计分布的准确性,而且基于区域Graph-Cut的算法明显降低了计算的复杂度.实验结果表明,改进后的算法不仅保证了分割的精确性,而且还达到了实时交互. Most interactive segmentation algorithms based on Graph-Cut do not usually lend themselves to real time applications with accurate segmentation. In this paper, an improved algorithm using local color models was pro- posed to deal with the problem. Using Mean-Shift technology, the proposed algorithm built an interactive image segmentation framework based on local color models. A Graph-Cut algorithm was then applied to the pre-segmented regions instead of image pixels. The pre-segmented regions preserve the image structure, which improves the esti- mation accuracy of distribution based on local color models and dramatically reduces the computational complexity. Experimental results show that the proposed algorithm has good real time interactivity with accurate segmentation.
出处 《智能系统学报》 2011年第4期318-323,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60805042) 福建省自然科学基金资助项目(2010J01329)
关键词 Graph-Cut 交互式图像分割 MEAN-SHIFT 实时交互性 Graph-Cut interactive image segmentation Mean-Shift real time interactivity
  • 相关文献

参考文献10

  • 1KASS M, WITKIN A, TERZOLPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
  • 2YUNRI Y, JOLLY B M P. Interactive graph cuts for optimal boundary and region segmentation of objects in ND images[C]//Proceedings of International Conference on Computer Vision. Vancouver, Canada, 2001, 1: 105-112.
  • 3ROTHER C, KOLMOGOROV V, BLAKE A. Grabcutinteractive foreground extraction using iterated graph cuts [J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
  • 4LI Yin, SUN Jian, TANG Chikeung, et al. Lazy snapping[C]//Computer Graphics Proceedings, Annual Conference Series(ACM SIGGRAPH). Los Angeles, USA, 2004: 303-308.
  • 5VICENTE A, KOLMOGOROV V, ROTHER C. Graph cut based image segmentation with connectivity priors[C]//Proceeding of IEEE International Conference on CVPR.[S.l.], 2008: 1-8.
  • 6刘陈,李凤霞,张艳.基于图割与泛形信息的对象分割方法[J].计算机辅助设计与图形学学报,2009,21(12):1753-1760. 被引量:11
  • 7COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 8RHEMANN C, ROTHER C, WANG J. A perceptually motivated online benchmark for image matting[C]// Proceedings of IEEE International Conference on CVPR. 2009: 1826-1833.
  • 9YUNRI Y, BOYKOV, KOLMOGOROV V. An experimental comparison of mincut/maxflow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137.
  • 10KOLMOGOROV V, ZABIH R. What energy functions can be minimized via graph cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159.

二级参考文献17

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1(4):321-331.
  • 2Adobe Systems Incorporation. Using Adobe Photoshop cs4 [OL]. [2009-03-09]. http://help. adobe. com/en_US/ Photoshop/11.0/index. html.
  • 3Vezhnevets V, Konouchine V. "Growcut "-interactive multi-label N D image segmentation by cellular automata [OL]. [2009-03-09]. http://www. graphicon. ru/2005/ proceedings/papers/VezhntvetsKonushin. pdf.
  • 4Grady L. Random walks for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 31768-1783.
  • 5Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N D images [C]//Proceedings of International Conference on Computer Vision, Vancouver, 2001, 1:105-112.
  • 6Rother C, Kolmogorov V, Blake A. "Grabcut"-interactive foreground extraction using iterated graph cuts [J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
  • 7Li Y, Sun J, Tang C K, et al. Lazy Snapping [C] // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2004: 303-308.
  • 8Boykov Y, Kolmogorov V. An experimental comparison of rain cut/max-flow algorithms for energy minimization in vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137.
  • 9Kohli P, Torr P H S. Dynamic graph cuts for efficient inference in Markov random fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (12): 2079-2088.
  • 10Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts? [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (2): 147-159.

共引文献10

同被引文献13

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部