期刊文献+

过量表达大叶补血草LgNHX1基因对拟南芥耐盐性的影响 被引量:1

Overexpressing LgNHX1 Gene Improved Salt Tolerance of Arabidopsis thaliana
下载PDF
导出
摘要 利用植物表达载体pCAMBIA1301和农杆菌GV3101将LgNHX1(全长1 656 bp)基因在拟南芥中过量表达。在含30 mg/L潮霉素的培养基上筛选获得LgNHX1的纯合转化子,并对其进行了分子鉴定和耐盐性分析。结果显示,经PCR和RT-PCR鉴定,野生型植株(对照)没有出现扩增条带,而转基因株系有相应的扩增条带,表明LgNHX1的确已经整合到拟南芥的基因组中,并已正常转录。在不同盐浓度处理下,转基因株系生长情况好于野生型对照;转基因植株地上部分和根的干重、鲜重相对高于野生型对照,但差异没有达到显著水平;当盐浓度达到150-200 mmol/L时,两个转基因株系的Na+含量显著高于野生型,K+含量极显著高于野生型。以上结果表明,过量表达LgNHX1基因可能增强了拟南芥将Na+区隔化至液泡的能力,提高了转基因拟南芥的耐盐能力。 In this research,LgNHX1 gene(1 656 bp)was inserted into plant vector pCAMBIA1301.The resulting plasmids were mobilized to Agrobacterium tumefaciens strain GV3101 used for plant transformation.The gene was introduced into Arabidopsis thaliana(ecotype Columbia)by Agrobaterium tumefaciens-mediated transformation with floral-dipping method under the control of CaMV 35S promoter.Transformants were selected for their ability to grow on medium containing hygromycin(30 mg/L).Several homozygous lines transformed with LgNHX1 gene were selected and used for further molecular and physiological determination.PCR analysis indicated that LgNHX1 gene had been integrated into the transgenic plants genomes.RT-PCR analysis revealed the expression of LgNHX1 gene in T3 plants of several non-segregation transgenic lines.Under different concentrations of NaCl treatment,the transgenic plants grew more vigorously than wild-type plants.The fresh weight and the dry weight of the transgenic lines were higher than that of wild-type plants,and transgenic plants showed a tendency to accumulate more Na+ and K+ under saline conditions than wild type plants.Summarily,overexpressing of LgNHX1 gene improved salt tolerance of transgenic plants.
出处 《生物技术通报》 CAS CSCD 北大核心 2011年第9期90-95,共6页 Biotechnology Bulletin
基金 石河子大学高层次人才启动项目(RCZX200903) 国家转基因专项(2008ZX08005-004)
关键词 LgNHX1基因 液泡膜Na+/H+逆向转运蛋白 拟南芥 耐盐性 LgNHX1 gene Vacuolar Na+/H+ antiporter Arabidopsis thaliana Salt tolerance
  • 相关文献

参考文献10

  • 1Fukuda A, Chiba K, Maeda M, et al. Effect of salt and osmotic stresses on the expression of genes for the vacuolar H^ + - pyrophos- phatase, H^+ -ATPase subunit A, and Na^+/H ^+ antiporter from bar- ley, Journal of Experimental Botany ,2004,55 ( 397 ) :585-594.
  • 2Barkla BJ, Pantoja O. Physiology of ion transport across the tonoplast of higher plant. Annu Rev Plant Physiol Biol, 1996,47:127-157.
  • 3Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na^+/H^+ antiport in Arabidopsis. Science, 1999,285 ( 5431 ) : 1256-1258.
  • 4Zhang HX, Blumwald E. Transgenic salt tolerant tomato plants accu- mulate salt in foliage but not in fruit. Nature Biotechnology,2001,19:765-768.
  • 5Zhang HX, Hodson JN, Williams JP, et al. Engineering salt-tolerant Brassica plant:characterization of yield and seed oil quality in trans- genic plants with increased vacuolar sodium accumulation. PNAS, 2001,98 (22) : 12832-12836.
  • 6He C, Yah J, Shen G, et ai. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic per- formance under salt conditions and increases fiber yield in the field. Plant Cell Physiol,2005,46( 11 ) :1848-1854.
  • 7Maathuis FJM, Amtmann A. K^+ nutrition and Na^+ toxicity:the ba- sis of cellular K^+/Na^+ ratios. Annals of Botany, 1999,84 (2) : 123- 133.
  • 8陈利红,张波,徐子勤.AtNHX1基因对荞麦的遗传转化及抗盐再生植株的获得[J].生物工程学报,2007,23(1):51-60. 被引量:15
  • 9赵宇玮,步怀宇,郝建国,王英娟,贾敬芬.AtNHX1基因对草木樨状黄芪的转化和耐盐性表达研究[J].分子细胞生物学报,2008,41(3):213-221. 被引量:8
  • 10Xue ZY, Zhi DY, Xue GP, et al. Enhanced salt tolerance of trans- genie wheat( Tritivum aestivum L. ) expressing a vacuolar Na ^+/H^+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na^+. Plant Science, 2004,167 (4) : 849-859.

二级参考文献36

共引文献19

同被引文献20

  • 1依兵,于海秋,蒋春姬,刘宇,王晓磊,曹敏建.玉米自交系根系对低钾胁迫的响应[J].玉米科学,2010,18(6):46-50. 被引量:3
  • 2陈旭升,邹奎,许乃银,狄佳春,刘剑光,肖松华.棉花耐盐性遗传育种研究进展[J].江西农业学报,2005,17(2):68-72. 被引量:12
  • 3林君,孙玉强,吕有军,祝水金.种子盐引发对转基因抗虫棉耐盐性的影响[J].棉花学报,2006,18(6):338-341. 被引量:13
  • 4Cope J T. Effects of 50 years of fertilization with phosphorus and potassium on soil test levels and yields at six locations [ J]. Soil Sci., 1951, 45(2) : 342-347.
  • 5Yang F Q, Wang Q W, Zhang Z Y, et al.. Genotyplc variations in potassium uptake and utilization in cotton [ J]. J. Plant Nutr., 2010, 34( 1): 83-97.
  • 6Wang N, Hua H B, Eneji E A, et al.. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypittm hirsttttLm L. ) [ J]. J. Photoch. Photoch. Photobiol. B, 2012, 110(2) : 1-8.
  • 7Horie T, Sugawara M, Okada T, et al.. Rice sodium- insensitive potassium transporter, OsHAKS, confers increased salt tolerance in tobacco BY2 cells [ J ]. Biosci. Bioengin., 2011, 111(3) : 346-356.
  • 8Saghai-Maroof M A, Soliman K M, Jorgensen R A, et al.. Ribosomal DNA spacer-length polymorphisms in barley : mendelian inheritance, chromosomal location and population dynamics [J]. Proc. Natl. Acad. Sci. USA, 1984, 81:8014 -8018.
  • 9Prochaskova R K D, Sairam G C, Srivasava D V. Single oxidative stress and antioxidant activity as the basis of senescence in maize leaves [ J ]. P|ant Sci., 2001, 161 (4) : 765-771.
  • 10Cabrera E, Alvarez M C, Martin Y, et al.. K+ uptake systems in the yeast Hansenula polymorpha transcriptional and post- translational mechanisms involved in high-affinity Ktransporter regulation [ J]. Fungal Genet. Biol., 2012, 49(9): 755-763.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部