期刊文献+

医学图像配准算法研究 被引量:5

Multimodality Image Registration
下载PDF
导出
摘要 研究图像配准精度优化问题,医学图像由多种图像结合,利用图像各自的特点进行融合。图像配准技术一直被广泛应用在医学图像和遥感图像领域中,针对传统的图像配准算法效率和精度较低等不足,为了提高医学图像配准的准确度,提出了一种将改进的最大熵算法并应用到图像配准的优化过程中,算法首先将输入的待配准图像进行灰度处理,对灰度值进行初始化,然后采用遗传算法的选择、交叉和变异操作对图像进行平滑,并选择最优值,最后采用最大熵算法对图像进行配准选择,算法有效克服了传统遗传算法容易陷入局部最优的缺点。仿真结果表明了改进的算法有效的提高了图像配准的精确度,验证了改进算法是有效的图像配准方法。 The problem of image registration accuracy. Image registration techniques has been widely used in medical imaging and remote sensing images, and other fields, for the traditional image registration algorithm and low efficiency and lack of precision, a genetic algorithm to improve adaptive and applied to image registration the optimi- zation process, the algorithm first pre-and post were adjusted using evolutionary crossover probability and mutation probability, the second cross, and immigration strategies to overcome the traditional genetic algorithm is easy to fall into local optimum shortcomings. Simulation results show that the algorithm effectively improves the accuracy of image registration, and with the common image registration algorithm compared to verify the feasibility of the method is an efficient image registration algorithm.
作者 秦洪英
出处 《计算机仿真》 CSCD 北大核心 2011年第9期291-294,共4页 Computer Simulation
关键词 遗传算法 图像配准 自适应 交叉 变异 Genetic algorithms Image registration Adaptive Cross Variationkyky
  • 相关文献

参考文献9

二级参考文献57

  • 1朱东柏,马春秋.等电阻电压法在空心干式电抗器设计中的应用[J].变压器,1994,31(7):21-23. 被引量:18
  • 2周成平,蒋煜,李玲玲,彭晓明.基于改进角点特征的多传感器图像配准[J].华中科技大学学报(自然科学版),2005,33(11):1-4. 被引量:6
  • 3Alstom Inc. Your partner in air core reactors[D/OL], http://www.transnet.fr/Transmission/Pages/pdf/AirCoreReactorsGB.pdf, 2002-9-11.
  • 4Srinivas M, patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithma[J]. IEEE Trans on Systems, Man and Cybernetics, 1994, 24(4): 656-667.
  • 5Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M]. New York: Addison-Wesley Publishing Company Inc,1989.
  • 6Brown L G.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376.
  • 7Zitová B,Flusser J.Image registration methods:A survey[J].Image and Vision Computing,2003,21(11):977-1000.
  • 8Fischler M,Bolles R.Random sample consensus:A paradigm for model fitting with application to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.
  • 9Isgrò F,Pilu M.A fast and robust image registration method based on an early consensus paradigm[J].Pattern Recognition Letters,2004,25(8):943-954.
  • 10Rodríguez J J,Aggarwal J K.Matching aerial images to 3-D terrain maps[J].IEEE Trans Pattern Anal Mach Intell,1990,12(12):1138-1149.

共引文献98

同被引文献48

  • 1郑亚琴,田心.医学图像配准技术研究进展[J].国际生物医学工程杂志,2006,29(2):88-92. 被引量:19
  • 2王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 3杨健,王涌天,唐宋元,周寿军,刘越.基于互信息量和薄板样条的X射线造影图像弹性配准[J].电子学报,2007,35(1):127-130. 被引量:4
  • 4罗述谦 周果宏.医学图像处理与分析[M].北京:科学出版社,2003..
  • 5Niranjan D-V, Kite T D, Geisler W S, et al. Image quality assess- ment based on a degrandation model[J]. IEEE Transactions on Image Processing, 2000,9(4) : 636-650.
  • 6Zhou Wang, Bovik A C. Mean Squared Error: Love it or leave it? [J]. IEEE Signal Processing Magazine, 2009,26 (1) : 98-117.
  • 7Miao Jun, Huo Dong-hai,Wilson D L. Quantitative image quality evaluation of MR images using perceptual difference models[J]. Medical Physics, 2008,38 (6) : 2541-2552.
  • 8Zitova B, l'lusser J. Image registration methods : a storey [ J ]. Image and Vision Computing,2003,21 ( 11 ) :977-1000.
  • 9Collignon A, Maes F, Delaere D, et al. Automated multimodal- ity medical image registration using information theo[ C ]// Proceedings of Information Processing in Medical Imaging. [ s. 1. ] :Is. n. ] ,1995:263-274.
  • 10Rangarajan A ,Chui H, Duncan J S. Rigid point feature regis- tration using mutual information[ J]. Medical Image Analysis, 1999,3(4) :425-440.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部