期刊文献+

基于新变异算子的改进粒子群优化算法 被引量:2

An Improved Particle Swarm Optimization Algorithm Based on New Mutation Operators
下载PDF
导出
摘要 粒子群优化算法(PSO)是一种基于群体智能的优化算法。本文在介绍PSO算法基本原理和流程的基础上,分析了该算法在处理一些复杂问题时容易出现的早熟收敛、收敛效率低和精度不高等问题,提出了一种基于新变异算子的改进粒子群优化算法(NMPSO)。NMPSO算法将产生的变异粒子与当前粒子进行优劣比较,选择较优的粒子,增强了种群的多样性,有效地避免算法收敛早熟。用5个常用基准测试函数对两种算法进行对比实验,结果表明:新提出的NMPSO算法增强了全局搜索能力,提高了收敛速度和收敛精度。 Particle swarm optimization (PSO) is an optimization algorithm based on swarm intelli- gence. Based on introducing PSO's theory and flow, this paper analyzes the phenomenon that it suffers from premature convergence, longer search time and lower precision when dealing with complex problems. An improved particle swarm optimization algorithm based on new mutation operators(NMPSO) is presented. The mutation operator is compared with the current particles, and the better one will be selected. So the diversity of population is improved, which can help the algorithm avoid premature convergence efficiently. The comparative simulation results on five benchmark functions verify that NMPSO improves PSO's global search capability, convergence rate and precision.
作者 张云明
出处 《计算机工程与科学》 CSCD 北大核心 2011年第9期95-99,共5页 Computer Engineering & Science
关键词 进化计算 粒子群优化算法 变异算子 全局最优 evolutionary computation particle swarm optimization (PSO) mutation operator globaloptimum
  • 相关文献

参考文献11

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization[C] //Proc of IEEE Int'l Conf on Neuarl Networks, 1995:1942- 1948.
  • 2沈学利,张纪锁.基于BP网络与改进的PSO算法的入侵检测研究[J].计算机工程与科学,2010,32(6):34-36. 被引量:12
  • 3胡玉兰,姜明洋,赵慧静.基于改进粒子群算法的移动机器人路径规划方法研究[J].计算机工程与科学,2009,31(6):139-141. 被引量:7
  • 4丁坚勇,陶文伟,张文涛.基于模拟退火PSO的电力系统无功优化[J].武汉大学学报(工学版),2008,41(2):94-98. 被引量:6
  • 5Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [C]//Proc of the Conf on Evolutionary Computation, 1998: 69-73.
  • 6Angeline P J. Using Selection to Improve Particle Swarm Optimization[C]//Proc of the IEEE Int'l Conf on Evolutionary Computation, 1998:84-89.
  • 7高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6. 被引量:160
  • 8Yang S, Wang M, Jiao I.. A Quantum Particle Swarm Optimization[C]//Proc of the 2004 Congress on Evolutionary Computation, 2004 : 320-324.
  • 9Wang Xihuai, I.i Junjun. Hybrid Particle Swarm Optimization with Simulated Annealing[C]//Proc of the 3rd Int'l Conf on Machine Learning and Cybernetics. Piscataway,2002:2402-2405.
  • 10Xie X, Zhang W, Yang Z. Adaptive Particle Swarm Optimization on Individual Level[C]//Proc of the Int'l Conf on Signal Processing, 1998 : 1215-1218.

二级参考文献29

共引文献180

同被引文献19

  • 1HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006,70(1):489-501.
  • 2SHI Y H, EBERHART R. A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE International Conference of Evolutionary Computation. Piscataway, NJ:IEEE, 1998:69-73.
  • 3KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE, 1995:1942-1948.
  • 4LEI X J,SUN J J,MAQ Z. Multiple sequence alignment based on chaotic PSO[J].Computational Intelligence and Intelligent Systems, 2009, 117(2/3):351-360.
  • 5HAN F, YAO H F,LING Q H.An improved extreme learning machine based on particle swarm optimization[C]//Proceedings of the 7th International Conference on Intelligent Computing:Bio-Inspired Computing an Applications. Berlin:Springer-Verlag, 2012:699-704.
  • 6HE Z B, WEN X H, HU LIU, et al. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region[J]. Journal of Hydrology, 2014, 509:379-386.
  • 7HUANG G B, CHEN L, SIEW C K. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(18):3460-3468.
  • 8HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2012, 42(2):513-529.
  • 9ZHANG Y N, TENG H F. Detecting particle swarm optimization[J]. Concurrency & Computation Practice & Experience, 2009, 21(4):449-473.
  • 10EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. Piscataway, NJ:IEEE, 1995:39-43.

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部