期刊文献+

一种时态关联规则挖掘算法 被引量:2

An Efficient Mining Algorithm of Temporal Association Rules
下载PDF
导出
摘要 时态关联规则挖掘是针对在一段时间范围内的关联挖掘,在现实中有较多的应用。现有的大多数时态关联挖掘算法或者需要多次扫描数据库,或者没有考虑各个项在数据集上出现或结束时间上的不同,因而挖掘性能受到较大的制约。为此,本文提出一种增量式的面向具有不同时间出现与结束的项的时态关联规则挖掘算法。为减少存储方面的开销,只需保存已挖掘过的历史数据集中的频繁1项集。为了减少数据的扫描量,通过有效的剪枝策略,有选择性地扫描相关事务项,至多只需扫描一次完整的数据库。实验证明,该算法具有较好的挖掘性能。 Temporal association rules mining(TARM) is widely applied in many applications, it aims at mining rules within a certain interval of time. Most of the exiting algorithms for TARM need to scan several times of the database, or do not consider the different exhibition period of an individual item, so the efficiency of these algorithms are not enough. In this paper, we present a novel approach to investi- gating TARM, the proposed algorithm works in an incremental way which takes the different exhibition period of individual item into account, in order to reduce the cost of storage, and only the frequent 1-i- tem is stored, and efficient pruning techniques are adopted to reduce the scan times of the database, and it only needs at most one time to scan the whole data set to obtain all the temporal association rules. The experimental results show that the proposed algorithm is efficient.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第9期105-108,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60875029)
关键词 数据挖掘 关联规则 时态挖掘 data mining association rules temporal mining
  • 相关文献

参考文献10

  • 1Ceglar A, Roddick J. Association Mining[J]. ACM Computing Surveys, 2006,38(2) : 1-43.
  • 2Huang Jen-Wei, Dai Bi-Ru, Chen Ming Syan. Twain: Two- End Association Miner with Precise Frequent Exhibition Periods[J]. ACM Transactions on Knowledge Discovery from Data, 2007,8(2) :800-815.
  • 3Junheng-Huang, Wang-Wei. Efficient Algorithm for Mining Temporal Association Rule[J]. Journal of Computer Science and Network Security, 2007,7 (4) : 268-271.
  • 4Lattner A D, Herzog O. Mining Temporal Patterns from Relational Data[C]//Proe of LWA'05, 2005 : 184-189.
  • 5Lee W J, Lee S J. Discovery of Fuzzy Temporal Association Rules[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004,34(6) :2330-2342.
  • 6Gharib T F, Taha M, Nassar H. An Efficient Technique for Incremental Updating of Association Rules [J]. Journal of Hybrid Intelligent Systems, 2008,5(1):45-53.
  • 7Emam A. Future Direction of Incremental Association Rules Mining[C]//Proc of the 471h ACM Annual Southeast Regional Conference, 2009.
  • 8Wang Yuping, Dong Nanping, Zhou Guanling. Incremental Updating Algorithm Based on Partial Support Tree for Mining Association Rules[C]//Proc of IITA Int'l Conf on Con trol, Automation and Systems Engineering (CASE 2009), 2009 : 17-20.
  • 9Lin Chun-Wei, Hong Tzung-Pei, Lu Wen-Hsiang. The Pre- FUFP Algorithm for Incremental Mining[J]. Journal of Expert Systems with Applications, 2009,36 (5) : 9498-9505.
  • 10Gharib T F, Nassar H, Taha M. An Efficient Algorithm for Incremental Mining of Temporal Association Rules[J]. Data & Knowledge Engineering, 2010,69(4):800-815.

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部