期刊文献+

基于拟杆菌特异性16S rRNA基因的塘坝型饮用水污染溯源研究 被引量:6

Potential Use of Bacteroidales Specific 16S rRNA in Tracking the Rural Pond-drinking Water Pollution
下载PDF
导出
摘要 微生物溯源是通过比较污染样品与可能的污染源中粪便污染指示微生物的差异或其生物标记的有无来判断污染样品和可能污染源之间存在的联系,从而确定污染来源。鉴于传统的溯源方法操作复杂、耗时长,建立了一种基于拟杆菌群体特异性16S rRNA基因进行溯源的方法,利用该方法证明了水源周围的池塘对饮用水的污染贡献较大。与已报道的另一种新的快速溯源方法——利用大肠杆菌特异性基因phoE(膜外周磷通道蛋白编码基因)的PCR-DGGE技术进行比较研究的结果表明,利用拟杆菌特异性16S rRNA基因的PCR-DGGE溯源方法结果可靠、操作简便,较之大肠杆菌phoE基因的PCR-DGGE溯源方法,拟杆菌的溯源方法更适合塘坝型饮用水的溯源研究。 Microbial source tracking(MST) is based on the differences of indicator bacteria or special band from environment samples and suggested production source. It provide accesss to track the sources of fecal pollution. Traditional MST methods is complex and time-consuming. In order to explore a quick an easy method, we practised to analyse the differences in Bacteroidales communities based on specific gene 16S rRNA by PCR-DGGE. The results indicated the drink water pollution were contributed by the pond. Additionally, this method was compared with reported PCR-DGGE which based on Escherichia coli specific gene phoE (the outer membrane phosphoporin protein coding gene). The results showed that acteroidales specific gene 16S rRNA could get more accurate result in investigated samples, which hinted that the researched method was more reliable and practical to tracking pollution.
出处 《农业环境科学学报》 CAS CSCD 北大核心 2011年第9期1880-1887,共8页 Journal of Agro-Environment Science
基金 国家科技重大专项“水体污染控制与治理”资助项目(2008ZX07425-002)
关键词 微生物溯源 拟杆菌 群体差异性 16S RRNA基因 大肠杆菌 膜外周磷通道蛋白编码基因phoE microbial source tracking Bacteroidales group-specific 16S rRNA Escherichia coli phoE
  • 相关文献

参考文献18

  • 1Stoner N, Dorfman M. Testing the waters: A guide to water quality at va- cation beaches[EB/OL]. Natural Resources Defense Council (2007-08) [2010-12-08]. http://www, nrdc. org/water/oceans/ttw/ttw2007, pdf.
  • 2Jiang S, Chu W, Olson B, et al. Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria[J]. Applied Microbiology and Biotechnol- ogy, 2007, 76(4) : 927-934.
  • 3Oyorzaly L, Tissier A, Bertrand I, et al. Relationship between F-specific RNA phage genogroups, faecal pollution indicators and human aden- oviruses in fiver water[J]. Water Research, 2009, 43(5 ) : 1257-1264.
  • 4Ram J L, Ritchie R P, Fang J W, et al. Sequence-based source tracking of Escherichia cali based on genetic diversity of beta-glucuronidase[J]. Journal of Environmental Quality, 2004, 33(3) : 1024-1032.
  • 5Griffith J F, Weisberg S B, Mcgee C D. Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test samples[J]. Journal of Water and Health, 2003, 4 ( 1 ) : 141-151.
  • 6Huang X. Identification of putative geographic sources of bacterial pollu- tion in Lake Erie by molecular fingerprinting[D]. Ohio: University of Toledo, 2007: 1-36.
  • 7Seurinck S, Verstraete W, Siciliano S D. Microbial source tracking for i- dentification of fecal pollution[J]. Reviews in Environmental Science and Bio/Technology, 2005, 4(1-2): 19-37.
  • 8冯广达,邓名荣,朱红惠,郭俊,张曦,朱昌雄,梁浩亮.水体粪便污染的微生物溯源方法研究进展[J].应用生态学报,2010,21(12):3273-3281. 被引量:5
  • 9Bernhard A E, Field K G. Identification of nonpoint sources of fecal pol- lution in coastal waters by using host-specific 16S Ribosomal DNA ge- netic markers from fecal anaerobes[J]. Applied and Environmental Mi- crobiology, 2000, 66(4) : 1587-1594.
  • 10Fiksdal L, Maki J S, Lacroix S J, et al. Survival and detection of Bac- teroides spp, Prospective indicator bacteria[J]. Applied and Environ- mental Microbiology, 1985, 49( 1 ) : 148-150.

二级参考文献64

  • 1孟凡德,姜霞,金相灿.长江中下游湖泊沉积物理化性质研究[J].环境科学研究,2004,17(z1):24-29. 被引量:47
  • 2Pruss A. Review of epidemiological studies on health effects from exposure to recreational water. International Journal of Epidemiology, 1998, 27 : 1-9.
  • 3Stoner N, Dorfman M. 2007. Testing the Waters: A Guide to Water Quality at Vacation Beaches. Natural Resources Defense Council [ EB/OL ]. ( 2007-08 ) [2010-05-08 ]. http://www. nrdc. org/water/oceans/ ttw/ttw2007. pdf.
  • 4Reischer GH, Kavka GG, Kasper DC, et al. Applica- bility of DNA based quantitative microbial source track- ing (QMST) evaluated on a large scale in the Danube River and its important tributaries. Archiv fuer Hydrobi- ologie Supplement, 2008, 166:117-125.
  • 5Ahmed W, Stewart J, Gardner T, et al. Sourcing faecal pollution: A combination of library-dependent and li- brary-independent methods to identify human faecal pollution in non-sewered catchments. Water Research, 2007, 41:3771-3779.
  • 6Jiang S, Chu W, Olson B, et al. Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Applied Microbiology and Biotechnology , 2007, 76:927-934.
  • 7Meays CL, Broersma K, Nordin R, et al. Source track- ing fecal bacteria in water: A critical review of current methods. Journal of Environmental Management, 2004, 73:71-79.
  • 8Scott TM, Rose JB, Jenkins TM, et al. Microbial source tracking: Current methodology and future direc- tions. Applied and Environmental Microbiology, 2002, 68 : 5796-5803.
  • 9Carson CA, Shear BL, Ellersieck MR, et al. Compari- son of ribotyping and repetitive extragenic palindromic- PCR for identification of fecal Escherichia coli from hu- mans and animals. Applied and Environmental Microbiol- ogy, 2003, 69:1836-1839.
  • 10Caplenas NR, Kanarek MS. Thermotolerant non-fecal source Klebsiella pneumoniae: Validity of the fecal coli- form test in recreational waters. American Journal of Public Health, 1984, 74:1273-1275.

共引文献81

同被引文献179

引证文献6

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部