期刊文献+

遗传神经网络特征提取及在分类中的应用 被引量:2

Feature Selection Based on Genetic Neural Network and Its Application in Classification
下载PDF
导出
摘要 将遗传算法和神经网络结合应用于乳腺癌细胞分类,首先利用遗传算法随机提取训练集的属性特征,然后用提取特征后的训练集训练神经网络,最后得到必要的特征子集优化网络结构。仿真实验结果表明,遗传神经网络不仅可以优化神经网络的权值和阈值,还能有效地找出线性可分离特征子集,从而达到降低数据维数并提高分类精度的目的。 A genetic algorithm combined neural network with the application in breast cancer cells classification was proposed. The genetic algorithm was used randomly to extract features from training sets. The training sets with extracted features were used to train the neural network. The necessary attributes subsets were used to optimize network structure. The simulation results show that the proposed model can not only optimize the weights and thresholds of neural network, but also effectively find linear separable feature subsets, so as to reduce data dimensions and improve the accuracy of classification.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第10期2094-2097,共4页 Journal of System Simulation
基金 国家自然科学基金(61070060) 安徽省高校自然科学研究重点项目(KJ2010A140)
关键词 遗传算法 神经网络 特征提取 分类 genetic algorithm neural networks feature selection classifier
  • 相关文献

参考文献12

  • 1姜远,周志华,谢琪,陈兆乾.神经网络集成在肺癌细胞识别中的应用[J].南京大学学报(自然科学版),2001,37(5):529-534. 被引量:19
  • 2M Karabatak, M C Ince. An expert system for detection of breast cancer based on association rules and neural network [J]. Expert Systems with Applications (S0957-4174), 2009, 36(2): 3465-3469.
  • 3X Yao, Y Liu. Neural networks for breast cancer diagnosis [C]// Proceedings of the 1999 Congress on Evolutionary Computation. Washington, DC, USA: IEEE, 1999.
  • 4周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 5L Liu, M Deng. An Evolutionary Artificial Neural Network Approach for Breast Cancer Diagnosis [C]// Proceedings of the 2010 Third International Conference on Knowledge Discovery and Data Mining. USA: IEEE, 2010.
  • 6D E Goldberg. Genetic algorithms in search, optimization, and machine learning [M]. USA: Addison-wesley, 1989.
  • 7杨启文,蒋静坪,张国宏.遗传算法优化速度的改进[J].软件学报,2001,12(2):270-275. 被引量:78
  • 8B Curry, P Morgan. Neural networks: a need for caution [J]. Omega (S0305-0483), 1997, 25(1): 123-133.
  • 9R K Belew, J Mclnerney, N N Schraudolph. Evolving networks: Using the genetic algorithm with connectionist learning [C]// Proceedings of the Second Conference on Artificial Life. CA, USA: Addison-Wesley, 1992.
  • 10C H Wang, H L Liu, C T Lin. Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm [J]. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics (S 1083-4419), 2001, 31 (3): 467-475.

二级参考文献14

共引文献344

同被引文献19

  • 1王菲,白洁.一种基于非线性特征提取的被动声纳目标识别方法研究[J].软件导刊,2010,9(5):116-118. 被引量:1
  • 2刘全金,李颖新,朱云华,阮晓钢.基于BP神经网络的肿瘤特征基因选取[J].计算机工程与应用,2005,41(34):184-186. 被引量:6
  • 3李俊俊,陆明泉,冯振明.一种改进的数字信号自动识别方法[J].系统工程与电子技术,2005,27(12):2023-2024. 被引量:3
  • 4付卫红,杨小牛,曾兴雯,刘乃安.一种基于时频分析神经网络的通信信号盲识别新方法[J].信号处理,2007,23(5):775-778. 被引量:2
  • 5XU J L, Su W, Zhou M C. Software-defined radio equipped with rapid modulation recognition[J]. IEEE Tr- ansactions on vehicular technology, 2010, 59: 1659-1667.
  • 6Xu J L, Su W, Zhou M C. Likelihood-ratio approaches to automatic modulation classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2011, 41: 455-469.
  • 7Hameed F, Dobre O A, Popescu D C. On the likeli- hood-based approach to modulation classification[J]. IEEE Transactions on Wireless Communications, 2009, 8: 5884-5892.
  • 8Puenqnim A, Thomas N, Tourneret J Y, et al. Classifica- tion of linear and non-linear modulations using the Baum-Welch algorithm and MCMC methods[J]. Signal Processing, 2010, 90: 3242-3255.
  • 9Avci E. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM[J]. Expert Systems with Applications, 2009, 36 1391-1402.
  • 10Avci D. An intelligent system using adaptive wavelet en- tropy for automatic analog modulation identification[J]. Digital Signal Processing, 2010, 20:1196-1206.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部