期刊文献+

基于AdaBoost的神经元形态分类的研究 被引量:1

Research on Classification of Neuron Morphology Based on AdaBoost
下载PDF
导出
摘要 根据神经元形态的几何特征,使用AdaBoost算法对其进行分类,采用决策树、贝叶斯和关联规则分类模型作为基分类器。算法首先采用直接面向组合分类器分类精度提升的集成学习算法选取基分类器,其次利用分类过程中生成样本的累计权值来调整前K次(K>1)被错误分类样本的权重,并提出双重阈值法对样本的最终投票表决结果进行判定。对20个测试样本进行分类,得出高可信度分类数为18个。 According to the geometric characteristics of neuron morphology, neurons were classified by AdaBoost algorithm, in which the decision tree, Bayesian and association rules classification model were used as base classifiers Firstly, the improvement of the classification precision of combined classifier directly oriented ensemble learning algorithms were adopted to select the base classifier. Secondly, cumulative weights of the sample generated during the classification were used to adjust the weights of misclassified samples in the former K (K〉 1) classification processes, and the dual threshold values for final voting results of samples were set. The 20 test samples were classified by AadBoost algorithm, and the results show that the number of highly reliable classification is 18.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第10期2138-2141,2146,共5页 Journal of System Simulation
基金 国家自然科学基金(41071253) 江苏省"六大人才高峰"高层次人才培养对象项目
关键词 神经元形态 ADABOOST 分类器组合 累计权值 neuronal morphology adaboost combined classifier cumulative weight
  • 相关文献

参考文献16

  • 1Gordon M Shepherd, Jason S Mirsky, Matthew D Healy, et al. The Human Brain Project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data [J]. Trends in Neurosciences (S0166-2236), 1998, 21(11): 460-468.
  • 2Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Science (S0022-0000), 1997, 55(1): 119-139.
  • 3Yoav Freund, Robert E Schapire. Experiments with a new Boosting algorithm [C]// Machine Learning: Proceedings of the Thirteenth International Conference. San Francisco, USA: Morgan Kaufmann Publishers, 1996: 148-156.
  • 4Paul A V, Michael J J. Rapid object detection using aboosted cascade of simple features [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA: IEEE Computer Society, 2001: 511-518.
  • 5苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 6[DB/OL]. http://neuromorpho.org/neuroMorpho/index.jsp.
  • 7G Ascoli, R F Goldin. Coordinate systems for dendritic spines: a somatocentric approach [J]. journal of Complexity(S0885-064X), 1997, 2(4): 40-48.
  • 8刘深泉,姚良瑾,覃秋菊,等.神经元的形态识别和电位发放特性[C]//第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集,2009:1043-1049.
  • 9詹君.神经元几何形态特征参数的MATLAB实现[J].计算机与数字工程,2011,39(3):36-40. 被引量:2
  • 10蒋焰,丁晓青.基于多步校正的改进AdaBoost算法[J].清华大学学报(自然科学版),2008,48(10):1613-1616. 被引量:25

二级参考文献58

共引文献480

同被引文献15

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2Dietterich T, Thomas G. Machine Learning Research: Four Current Directions [J]. AI Magazine (S0738-4602), 1997, 18(4): 97-136.
  • 3Zhou Z H, Wu J, Tang W. Ensembling Neural Networks: Many Could be Better than All [J]. Artificial Intelligence (S0004-3702), 2002, 137(1): 239-263.
  • 4Freund Y, Sehapire R E. A Decision-theoretic Generalization of On-line Learning and an Application to Boosting [J]. Journal of Computer and System Science (S0022-0000), 1997, 55(1): 119-139.
  • 5Martinez-Munnoz G, Hemandez-Lobato D, Suarez A. An Analysis of Ensemble Pruning Techniques Based on Ordered Aggregation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (SO 162-8828), 2009, 31 (2): 245-259.
  • 6Bryll R, Gutierrez-Qsuna R, Quek F. Attribute Bagging: Improving Accuracy of Classifier Ensembles by Using Random Feature Subsets [J]. Pattern Recognition (S0031-3203), 2003, 36(6): 1291-1302.
  • 7Bakker B, Heskes T. Clustering Ensembles of Neural Network Models [J]. Neural Networks (S0893-6080), 2003, 16(2): 261-269.
  • 8Cheng X Y, Guo H L. The Technology of Selective Multiple Classifiers Ensemble Based on Kernel Clustering [C]// Proceedings of the 2nd Symposium on Intelligent Information Technology Application, Shanghai, China. USA: IEEE Publisher, 2008: 146-150.
  • 9Zhang J, Chau K W. Multilayer Ensemble Pruning via Novel Multi-sub-swarm Particle Swarm Optimization [J]. Journal of Universal Computer Science (S0948-695X), 2009, 15(4): 840-858.
  • 10Simon D. Biogeography-based Optimization [J]. IEEE Transactions on Evolutionary Computation (S 1089-778X), 2008, 12(6): 702-713.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部