期刊文献+

主从FitzHugh-Nagumo神经元的鲁棒输出同步控制 被引量:1

Robust Output Synchronization Control of Master-slave FitzHugh-Nagumo Neurons
下载PDF
导出
摘要 将内模理论应用于混沌吸引子的同步控制,针对电耦合FitzHugh-Nagumo神经元中存在未知的参数和不确定的异质扰动,引入内模并设计合适的状态反馈控制器保证了主从系统的鲁棒输出同步的半局Lyapunov渐进稳定性,有效克服了系统不确定异质干扰的影响;仿真结果验证了所提控制方法的有效性。 Internal model control method was applied to the synchronous control of chaos attractor, and suitable state feedback controller was designed by introducing the internal model to guarantee the semiglobal Lyapunov asymptotic stability of robust output synchronization for the master-slave FitzHugh- Nagumo neurons under the unknown parameters and heterogeneous disturbances. The simulation results demonstrate the validity of the proposed method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第10期2200-2205,共6页 Journal of System Simulation
基金 国家自然科学基金重点项目(50537030) 国家自然科学基金青年科学基金(60901035) 国家自然科学基金项目(61072012)
关键词 混沌 FHN模型 异质 同步 内模 chaos FHN model heterogeneity synchronization internal model
  • 相关文献

参考文献19

  • 1G L. Chaos in Neural Systems [K]//The Handbook of Brain Theory and Neural Networks. Cambridge, USA: MIT, 1989:186-189.
  • 2G CM, K P, E AK, S W. Oscillatory Responses in Cat Visual Cortex Exhibit Inter-Columnar Synchronization Which Reflects Global Stimulus Properties [J]. Nature (S0028-0836), 1989, 338(6213): 334-337.
  • 3Steriade M, Mccormick Da, S Tj. Halamocortical Oscillations in the Sleeping and Aroused Brain [J]. Science (S0036-8075), 1993, 262(5134): 679-685.
  • 4Roelfsema Pr, Engel A.k, Konig P, S W. Visuomotor Integration Is Associated with Zero Time-Lag Synchronization among Cortical Areas [J]. Nature (S0028-0836), 1997, 385(6612): 57-61.
  • 5Q Y Wang, Q S Lu, G R Chen, D H Guo. Chaos Synchronization of Coupled Neurons with Gap Junctions [J]. Phys Lett A (S0375-9601), 2006, 356(1): 17-25.
  • 6M Dhamala, V K Jirsa, M Z Ding. Enhancement of Neural Synchrony by Time Delay [J]. Physical Review Letters (S0031-9007), 2004, 92(7): 074104.
  • 7R C Elson, A I Selverston, R Huerta, N F Rulkov, M I Rabinovich, H D I Abarbanel. Synchronous Behavior of Two Coupled Biological Neurons [J]. Physical Review Letters (S0031-9007), 1998, 81(25): 5692-5695.
  • 8O Comejo-Perez, R Femat. Unidirectional Synchronization of Hodgkin-Huxley Neurons [J]. Chaos Soliton Fract (S0960-0779), 2005, 25(1): 43-53.
  • 9T Zhang, J Wang, X Y Fei, B Deng. Synchronization of Coupled Fitzhugh-Nagumo Systems Via Mimo Feedback Linearization Control [J]. Chaos Soliton Fract (S0960-0779), 2007, 33(1): 194-202.
  • 10B Deng, J Wang, X Y Fei. Synchronizing Two Coupled Chaotic Neurons in External Electrical Stimulation Using Backstepping Control [J]. Chaos Soliton Fract (S0960-0779), 2006, 29(1): 182-189.

同被引文献9

  • 1KhalilHK.非线性系统[M].3版.北京:电子工业出版社,2011.
  • 2WANG Hu, YU Yongguang. ZHAO Ran, et al. Two-parameter bifurcation in a two-dimensional simplified Hodgkin-Huxley model [J]. Commun Nonlinear Sci Numer Simul, 2013, 18(1): 184-193.
  • 3AQIL M, HONG K S, JEONG M Y. Synchronization of coupled chaotic FitzHugh-Nagumo systems [J]. Com- mun Nonlinear Sci Numer Simul, 2012, 17(4): 1615-1627.
  • 4JING Zhujun, CHANG Yu, GUO Boling. Bifurcation and chaos in discrete FitzHugh-Nagumo system [J]. Chaos, Solitons Fractals, 2004, 21(3):701-720.
  • 5ZHAO Yi, XIE I.ingli, YIU K F C. An improvement on Marotto's theorem and its application to chaotification of switching systems [J]. Chaos, Solitons Fractals, 2009, 39(5):2225-2232.
  • 6FAN Dejun, HONG Ling. Hopf bifurcation analysis in a synaptically coupled FHN neuron model with delays [J]. Commun Nonlinear Sci Numer Simul, 2010, 15(7):1873-1886.
  • 7ZHEN Bin, XU Jian. Bautin bifurcation analysis for synchronous solution of a coupled FHN neural system with delay [J]. Commun Nonlinear Sci Numer Simul, 2010, 15(2): 442-458.
  • 8张莹,李智.基于HH模型的心肌细胞电模型[J].计算机与数字工程,2012,40(4):1-2. 被引量:2
  • 9沈月琳,李朕.一类时滞混沌系统的混合控制与同步[J].扬州大学学报(自然科学版),2013,16(4):1-4. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部