期刊文献+

超二次条件下差分方程的周期解

Periodic Solutions for Difference Equations under Superquadratic Condition
下载PDF
导出
摘要 研究了二阶差分方程△(p(t)△u(t-1))+W(t,u(t))=0周期解的存在性,其中W(t,u)=-K(t,u)+F(t,u)。假设K满足"夹逼"条件和F在原点与无穷远处是超二次的,分别用环绕定理和山路引理得到了多重或无穷多周期解,推广了某些已知的结果。 This paper analyzes the existence of periodic solutions for the second order difference equations -△(p (t) △u (t - 1 ) )+△↓ W (t, u (t) ) = 0, where W (t, u ) =- K (t, u ) + F (t, u ). Assuming that K sat isfies t he "pinching" condition and is superquadratic at zero and at infinity,multiple periodic solutions and infinitely many solu- tions are obtained respectively with the linking theorem and Mountain Pass lemma. The results provide a gener- alization for some known ones.
作者 孟青
出处 《宿州学院学报》 2011年第8期11-14,共4页 Journal of Suzhou University
关键词 差分方程 周期解 超二次 环绕定理 山路引理 difference equations periodic solutions superquadratic linking theorem Mountain Pass lemma
  • 相关文献

参考文献4

  • 1郭志明,庾建设.二阶超线性差分方程周期解与次调和解的存在性[J].中国科学(A辑),2003,33(3):226-235. 被引量:31
  • 2J Yu,Z Guo,X Zou. Periodic solutions of second order self adjiont difference equations[J]. London Math Soc, 2005, 71(2):146-160.
  • 3Z Zhou,J Yu, Z Guo. Periodic solutions of higher dimensional discrete systems [J]. Proc Roy Soc Edinburgh, 2004,134 (A) : 1013-102.
  • 4P H Rabinowitz. Minimax methods in critical point theory with applications to differential equations [J]. America Mathematical Society, 1986,65 : 7-18.

二级参考文献20

  • 1Hale J K, Mawhin J. Coincidence degree and periodic solutions of neutral equations. J Differential Equations,1974, 15:295-307.
  • 2Elaydi S N. An Introduction to Difference Equations. New York: Springer-Verlag, 1999.
  • 3Pielou E C. An Introduction to Mathematical Ecology. New York: Willey Interscience, 1969.
  • 4Palais R S, Smale S. A generalized Morse theory. Bull Amer Math Soc, 1964(70): 165-171.
  • 5Michalek R, Tarantello G. Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J Differential Equations, 1988, 72:28-55.
  • 6Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations.CRMS AMS. 1986. 65:7-18.
  • 7Capietto A, Mawhin J, Zanolin F. A continuation approach to superlinear periodic boundary value problems.J Differential Equations, 1990, 88:347-395.
  • 8Agarwal R P. Difference Equations and Inequalities: Theory, Methods and Applications. New York: Marcel Dekker, 1992.
  • 9Erbe L H, Xia H, Yu J S. Global stability of a linear nonautonomous delay difference equations. J Diff Equations Appl, 1995(1): 151-161.
  • 10Gyoeri I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications. Oxford: Oxford Universitv Press. 1991.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部