摘要
研究了二阶差分方程△(p(t)△u(t-1))+W(t,u(t))=0周期解的存在性,其中W(t,u)=-K(t,u)+F(t,u)。假设K满足"夹逼"条件和F在原点与无穷远处是超二次的,分别用环绕定理和山路引理得到了多重或无穷多周期解,推广了某些已知的结果。
This paper analyzes the existence of periodic solutions for the second order difference equations -△(p (t) △u (t - 1 ) )+△↓ W (t, u (t) ) = 0, where W (t, u ) =- K (t, u ) + F (t, u ). Assuming that K sat isfies t he "pinching" condition and is superquadratic at zero and at infinity,multiple periodic solutions and infinitely many solu- tions are obtained respectively with the linking theorem and Mountain Pass lemma. The results provide a gener- alization for some known ones.
出处
《宿州学院学报》
2011年第8期11-14,共4页
Journal of Suzhou University
关键词
差分方程
周期解
超二次
环绕定理
山路引理
difference equations
periodic solutions
superquadratic
linking theorem
Mountain Pass lemma