期刊文献+

柱体上一类反应对流扩散方程行波解的存在性 被引量:1

Existence of traveling wave solutions to a class of reaction-advection-diffusion equations in infinite cylinder
下载PDF
导出
摘要 通过构造新的上、下解证明了当波速c>c0时一类反应对流扩散方程行波解的存在性.其中c0是对应方程导出的泛函没有非平凡最小时,行波u0所对应的波速. The existence of traveling wave solutions with speed c c0 was established for a kind of scalar reaction-advection-diffusion equation by constructing new supper-sub solution,where c0 is the wave speed cor-responding to the traveling wave u0,if the functional does not reach non-trivial minimizers.
作者 孟海霞
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期94-98,共5页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(11061017)
关键词 行波解 存在性 上、下解 混合边界条件 traveling wave solution existence upper-sub solution mixed boundary condition
  • 相关文献

参考文献13

  • 1MURATOV C B, NOVAGA M. Front propagation in infinite cylinders: Ⅰ. a variational approach[J]. Commun Math Sci, 2008, 6(4): 799-826.
  • 2BORCKMANS P, DEWOL G, DE WIT A, et al. D- iffusive instabilities and chemical reactions[J]. Int J Bifurc Chaos, 2002, 12(11): 2 307-2 332.
  • 3MURATOV C B. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type[J]. Discrete Cont Dyn S, 2004, 4(4): 867-892.
  • 4FISHER R A. The wave of advance of advantageous genes[J]. Ann Eugenics, 1937, 7(4): 355-369.
  • 5GARDNER R. Existence of multidimensional trav- eling wave solutions of an innitial boundary value problem[J]. J Differential Equations, 1986, 61(3): 335-379.
  • 6KOLMOGOROV A N, PESTROVSKY I G, PISKUNOV N S. A study of the equation of diffusion with in- crease in the quantity of matter and its application to a biological problem[J]. Bjul Moskowskogo Gos Univ, 1937, 1(6): 1-25.
  • 7VEGA J M. Travelling wavefronts of rectiom diffusion equations in cylindrical domains[J]. Comm Partial Differential Equations, 1993, 18(3/4): 505-531.
  • 8BERESTYCKI H, LARROUTUROU B. A semi-linear elliptic equations in a strip arising in a two- dimensional flame propagation model[J]. J Reine Angew Math, 1989(396): 14-49.
  • 9BERESTYCKI H, LARROUTUROU B, LIONS P L. Multidimensional traveling wave solutions of a flame propagation model[J]. Arch Rat Mech Anal, 1990, 111(1): 33-49.
  • 10BERESTYCKI H, NIRENBERG L. Traveling fronts in cylinders[J]. Ann Inst H Poincare Anal Nonlineaire, 1992, 9(5): 497-572.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部