期刊文献+

基于线性表的闭频繁项集挖掘算法

Mining closed frequent itemsets based on list structure
下载PDF
导出
摘要 利用频繁模式表的线性表简单结构及闭频繁项集挖掘的优点,提出了一种闭频繁项集挖掘算法.模式签名向量间的合取操作以及向量计数操作为该算法的主要操作,实现从已生成的闭频繁项集生成集中抽取代表模式,降低了模式搜索空间,简化了生成闭频繁项集的过程,实验结果验证了该算法的有效性. An approach that combines the advantages of the frequent pattern list(FPL) and closed frequent itemsets mining was proposed.The approach selects representation patterns from closed frequent candidate itemsets to reduce combinational space of frequent patterns.By performing two operations,signature vector conjunction and vector counting,it simplifies the process of closed itemsets generation.Experimental results verified the effectiveness of the algorithm.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期122-126,共5页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(10961017)
关键词 闭频繁项集 签名向量 向量合取 向量计数 频繁模式表 closed frequent itemset signature vector vector conjunction vector counting frequent pattern list
  • 相关文献

参考文献15

  • 1AGRAWAL R, SRIKANT R. Fast algorithms for min- ing association rules in large databases[C]//Procee- ding of the 20 th International Conference on Very Large Databases. San Francisco: Morgan Kaufmann Publishers~ 1994: 478-499.
  • 2SAVASERE A, OMIECINSKI E, NAVATHE S. An effi- cient algorithm for mining association rules in large database[C]//Proceedings of the 21 th International Conference on Very Large Database. San Francisco: Morgan Kaufmann Publishers,1995: 432-443.
  • 3BERZAL F, CUBERO J, MAR I N. TBAR: an effi- cient method for association rule mining in relation- al databases[J]. Data and Knowledge Engineering, 2001, 37(1): 47-64.
  • 4毛国君,刘椿年.基于项目序列集操作的关联规则挖掘算法[J].计算机学报,2002,25(4):417-422. 被引量:37
  • 5李云,蔡俊杰,刘宗田,陈崚,李拓.基于量化规则格的关联规则渐进更新[J].计算机应用研究,2007,24(5):27-30. 被引量:7
  • 6HAN Jia-wei, PEI Jian, YIN Yi-wen. Min- ing frequent patterns without candidate genera- tion[C]//Proceedings of the 20 th ACM SIGMOD International Conference on Management of Data. New York- ACM, 2000: 1-12.
  • 7朱玉全,孙志挥,季小俊.基于频繁模式树的关联规则增量式更新算法[J].计算机学报,2003,26(1):91-96. 被引量:80
  • 8欧阳为民,蔡庆生.基于垂直数据分布的关联规则高效发现算法[J].软件学报,1999,10(7):754-760. 被引量:18
  • 9CHEN Tseng-fan, CHI Hsu-ching. Generating frequent patterns with the frequent pattern list[C]//CHEUNG D, WILLIAMS G J, LI Qing. Pro- ceedings of 5 th Pacific-Asia Conference on Ad- vances in Knowledge Discovery and Data Min- ing (PAKDD 2001). Berlin: Springer-Verlag, 2001: 376-386.
  • 10PASQUOER N, BASTIDE Y, TAOUIL R. Efficient mining of association rules using closed itemset lat- tices[J]. Information Systems, 1999, 24(1): 25-46.

二级参考文献38

  • 1李云,刘宗田,陈崚,徐晓华,程伟.多概念格的横向合并算法[J].电子学报,2004,32(11):1849-1854. 被引量:50
  • 2李云,刘宗田,吴强,沈夏炯,强宇.概念格的分布处理研究[J].小型微型计算机系统,2005,26(3):448-451. 被引量:11
  • 3王黎明,赵辉.基于FP树的全局最大频繁项集挖掘算法[J].计算机研究与发展,2007,44(3):445-451. 被引量:16
  • 4[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Date, Washington DC, 1993.207~216
  • 5[2]Agrawal R, Srikant R. Fast algorithm for mining association rules. In: Proceedings of the 20th International Conference on VLDB, Santiago, Chile, 1994. 487~499
  • 6[3]Han J, Kamber M. Data Mining: Concepts and Techniques. Beijing: Higher Education Press, 2001
  • 7[5]Agrawal R, Shafer J C. Parallel mining of association rules:Design, implementation, and experience. IBM Research Report RJ 10004,1996
  • 8[6]Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules. In: Proceedings of the 21th International Conference on VLDB, Zurich, Switzerland, 1995. 432~444
  • 9[7]Hah J, Jian P et al. Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, 2000.1~12
  • 10[8]Cheung D W, Lee S D, Kao B. A general incremental technique for maintaining discovered association rules. In: Proceedings of databases systems for advanced applications, Melbourne, Australia, 1997. 185~194

共引文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部