期刊文献+

一种新的基于局部保持投影的高维数据聚类成员构造方法

New Ensemble Constructor Based on Locality Preserving Projection for High Dimensional Clustering
下载PDF
导出
摘要 研究在高维数据中如何产生聚类成员,并提出一种新的构造聚类成员的方法。为解决高维数据的维度对构造成员带来的影响,新的构造方法在构造聚类成员之前利用局部保持投影先对高维数据进行维度约减,然后在约减后的子空间中用随机投影结合K均值方法构造聚类成员。最后讨论了局部保持投影子空间维度的选取。实验表明,新方法得到的结果要明显优于已有的主分量分析结合下采样方法和简单的随机投影方法。 This paper studied how to construct cluster ensembles for high dimensional data and proposed a new ensemble constructor.To ameliorate the effect caused by high dimensionality,the proposed method used Locality Preserving Projections(LPP) to reduce the dimensionality before constructing ensembles.Then constructed ensembles based on random projection combined with K means in LPP subspace.Finally,we discussed how to choose the dimensionality of LPP subspace.The experiments show that ensembles generated by new algorithms perform better than those by Principal Component Analysis with subsampling(PCASS) and simple Random Projection(RP) that was proposed before.
出处 《计算机科学》 CSCD 北大核心 2011年第9期177-181,共5页 Computer Science
基金 国家自然科学基金(60632050 60873151)资助
关键词 聚类融合 维度约减 局部保持投影 随机投影 Cluster ensembles Dimension reduction Locality preserving projections Random projection
  • 相关文献

参考文献15

  • 1Jain A K. Data Clustering: 50 Years Beyond K-Means[J]. Pattern Recognition Letters,2010,31(8):651-666.
  • 2Fern X Z, Brodley C E. Random Projection For High Dimensional Data Clustering: A Cluster Ensemble Approach[C]//Proceedings of the 20th International Conference on Machine Learning. Washington DC, 2003: 186-193.
  • 3Turk M,Pentland A P. Face Recognition Using Eigenfaces[C]//IEEE Conference on Computer Vision and Pattern Recognition. Maui Marriott, Hawaii, 1991 : 586-591.
  • 4Deng Cai, et al. Orthogonal Laplacianfaces for Face Recognition [J ]. IEEE Transactions on Image Processing, 2006, 15 ( 11 ) : 3608-3614.
  • 5Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000, 290 (5500) : 2323- 2326.
  • 6Strehl A, Ghost J. Cluster Ensembles-A Knowledge Reuse Framework for Combining Multiple Partitions[J]. Journal of Machine Learning Research, 2002,3 : 583-617.
  • 7罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007,30(8):1315-1324. 被引量:36
  • 8Fred A L,Jain A K. Combining Multiple Clusterings Using Evidence Accumulation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005 : 835-850.
  • 9Topchy A,Jain A K. Clustering Ensembles: Models of Consensus and Weak Partitions[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005,27(6) - 1866-1881.
  • 10Ayad H G,Kame[M]. Cumulative Voting Consensus Method for Partitions with A Variable Number of Clusters[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2008,30(1) : 160-173.

二级参考文献45

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2Keogh E, Kasetty S. On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. Data Mining and Knowledge Discovery, 2003, 7(4): 349-371
  • 3Guha S, Meyerson A, Mishra N, et al. Clustering Data Streams: Theory and Practice. IEEE Trans on Knowledge and Data Engineering, 2003, 15(3) : 515 -528
  • 4Aggarwal C C, Han Jiawei, Wang Jianyong, et al. A Framework for Clustering Evolving Data Streams //Proc of the 29th International Conference on Very Large Data Base. Berlin, Germany, 2003: 81 -92
  • 5Charikar M, O'Callaghan L, Panigrahy R. Better Streaming Algorithms for Clustering Problems // Proc of the 35th Annual ACM Symposium on Theory of Computing. San Diego, USA, 2003 : 30 - 39
  • 6Beringer J, Hullermeier E. Online Clustering of Parallel Data Streams. Data & Knowledge Engineering, 2006, 58(2): 180 - 204
  • 7Yeh M Y, Dai Biru, Chen M S. Clustering over Multiple Evolving Streams by Events and Correlations. IEEE Trans on Knowledge and Data Engineering, 2007, 19(10) : 1349 - 1362
  • 8Johnson W B, Lindenstrauss J. Extensions of Lipschitz Mappings into a Hilbert Space. Contemporary Mathematics, 1984, 26 ( 1 ) : 189 -206
  • 9Achlioptas D. Database-Friendly Random Projections//Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Santa Barbara, USA, 2001 : 274 -281
  • 10Linial N, London E, Rabinovich Y. The Geometry of Graphs and Some of Its Algorithmic Applications. Combinatorica, 1995, 15 (2) : 215 -245

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部