期刊文献+

增广Lagrange函数优化算法在稀疏信号重构问题中的应用 被引量:4

Application of Augmented Lagrange Optimization Algorithm to the Sparse Signal Reconstruction Problem
下载PDF
导出
摘要 针对稀疏信号恢复的lp优化模型(0<p≤1),提出了一种可行稳健的增广Lagrange函数优化算法。该算法通过构造精确罚函数的方法,设置有限的增广因子参数,有效地避免了类似于传统FOCUSS迭代算法中出现的计算病态性问题,从而极大提高了信号恢复的精确度。为解决大规模的信号重构问题,还引入了共轭梯度法,以促进算法加速收敛。最后,仿真结果表明,改进型的增广Lagrange函数优化算法较大程度提升了稀疏信号重构的能力。 To solve the problem of finding sparse solutions from lp optimization model(0p≤1),this paper presented a kind of novel robust approach based on the augmented Lagrange optimization algorithm.This method introduces precise penalty function by setting limited value of augment factor to enhance the precision of signal recovery,which also avoids the problem of ill-condition computation happened in traditional FOCUSS algorithm.For dealing with large scale problem,Conjugate Gradient method was cooperated with the augmented Lagrange optimization algorithm to accelerate the convergence speed.Finally,computer simulations illustrate the performance on strengthening the recovery ability of signal.
出处 《计算机科学》 CSCD 北大核心 2011年第9期193-196,共4页 Computer Science
基金 国家自然科学基金(60974077) 广东省自然科学基金(10251009001000002)资助
关键词 稀疏信号重构 lp优化模型 FOCUSS算法 增广Lagrange函数优化算法 Sparse signal reconstruction lp optimization model FOCUSS Augmented Lagrange optimization algorithm
  • 相关文献

参考文献9

  • 1Gorodnitsky I F, Rao B D. SparseSignal Reconstruction from Limited Data Using FOCUSS: A reweighted minimum norm algorithm[J]. IEEE Trans, Signal Process, 1997,45 (3) : 600-616.
  • 2Kim S-J, Koh K, Lustig M, et al. An Interior-Point Method for Large-Scale ll-Regularized Least Squares[J]. IEEE Journal on Selected Topics in Signal Processing, 2007,1(4):606-617.
  • 3Donoho D. Compressive sampling[J]. IEEE Trans on Information Theory,2006,52(4) :1289-1306.
  • 4Rao B D, Kreutz-Delgado K. An affine scaling methodology for best basis selection [J].IEEE Trans. SignalProcess, 1999, 47 (1) : 187-200.
  • 5Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer-Verlag, 2006.
  • 6Magnusr R. Multiplier and gradientmethods[C]//the Second International Conference on Computing Methods in Optimization Problems. San Remo,Italy, 1968.
  • 7He Zhao-shui, Cichocki H A, Zdunek R, et al. Improved FOCUSS method with conjugate gradient iterations [J]. IEEE Transactions on Signal Processing, 2009,57 ( 1 ) : 399-404.
  • 8Cand-s E J, Wakin M B, Boyd S P. Enhancing spasity by reweighted 11 minimization[J]. Journal of Fourier Analysis and Applications, 2008,14 (5/6).
  • 9Gorodnitskya I F, Georgeb J S, Raoa B Do Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm[J]. Electroencephalography and Clinical Neurophysiology, 1995,95 (4) : 231-251.

同被引文献26

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部