期刊文献+

基于多空间概率分布的汉语连续语音声调识别研究 被引量:3

Research about Tone Recognition of Mandarin Continuous Speech Based on Multi-space Probability Distribution
下载PDF
导出
摘要 汉语是一种带声调的语言,声调信息在汉语语音识别中具有非常重要的意义。提出了embedded声调模型与explicit声调模型相结合的方法用以识别汉语连续语音的声调。该方法能够将逐帧的基频信息和较强时长的基频信息相结合来识别声调。在"863-Test"和"TestCorpus 98"测试集上的实验表明,该方法分别能够达到96.12%和93.78%的声调识别正确率。 Chinese Mandarin is the tonal language.Tone is important to Mandarin speech recognition.We proposed a method to recognize the tone of Mandarin continuous speech,which is the combination of embedded tone model and explicit tone model.This method can fuse the fundamental frequency information of short time and long time.The experiments in "863-Test" and "TestCorpus98" test show that our proposed method can achieve 96.12% and 93.78% tone recognition correct rate separatively.
出处 《计算机科学》 CSCD 北大核心 2011年第9期224-226,241,共4页 Computer Science
基金 国家自然科学基金(90820303 60675026 90820011) 国家高技术研究863计划(20060101Z4073 2006AA01Z194) 国家重点基础研究发展973计划(2004CB318105)资助
关键词 声调 基频 多空间概率分布 Tone Fundamental frequency Multi-space probability distribution
  • 相关文献

参考文献14

  • 1Xu Bo, Gao Sheng, Cao Yang, et al. Integrating tone information in continuous Mandarin recognition [C]//Proc. ISSPIS' 99. Guangzhou.
  • 2Lee T,Lau W,Wong Y W,et al. Using tone information in Cantonese continuous speech recognition [J]. ACM Trans. on Asian Language Information Processing, 2002,1 (1) : 83-102.
  • 3Liu J, Yu T. New tone recognition methods for Chinese continuous speech [C]//Proc. ICSLP'00. Beijing.
  • 4Zhang J-S, Hirose K. Anchoring hypothesis and its application to tone recognition of Chinese continuous speech [C]// Proc. ICASSP 2000. Istanbul,June 2000.
  • 5Peng G,Wang W S Y. An innovative prosody modeling method for Chinese speech recognition [J ]. International Journal of Speech Technology, 2004,7(4) : 129-140.
  • 6Cao Y, Deng Y, Zhang H, et al. Decision tree based Mandarin tone model and its application to speech recognition [C]//Proc. ICASSP 2000. 2003,3:1759-1762.
  • 7Sun Y, Willett D, Brueckner R, et al. Experiments on Chinese speech recognition with tonal models and pitch estimation using the Mandarin speech data [C]//Proe. ICSLP. 2006:1245-1248.
  • 8Seide F,Wang N. Two-stream modeling of Mandarin tones [C]// Prom ICSLP. 2000:867-870.
  • 9Qian Y, Song F K, Lee T. Tone-enhanced generalized character posterior probability(GCPP) for Cantonese LVCSR [J]. Computer Speech and Language, 2008,22(4) : 360-373.
  • 10Peng G, Wang W S Y. Tone recognition of continuous Cantonese speech based on support vector maehines [J]. Speeeh Communication, 2005,45 (1) : 49-62.

同被引文献20

  • 1楼红伟,胡光锐.基于Teager能量算子和频率弯折小波变换的语音识别特征参数[J].上海交通大学学报,2003,37(z1):79-82. 被引量:8
  • 2高新涛,陈乖丽.语音识别技术的发展现状及应用前景[J].甘肃科技纵横,2007,36(4):13-13. 被引量:19
  • 3Vijayasenan D, Valente F, Bourlard H. Multistream speaker dia- rization of meetings recordings beyond MFCC and TI)OA fea- tures [J]. Speech Communication, 2012,54 (1) : 55-67.
  • 4Wang L, Minami K, Yamamoto K, et al. Speaker Recognition by Combining MFCC and Phase Information in Noisy Conditions [J]. IEICE Transactions on Information and Systems, 2010, E93D(9) :2397-2406.
  • 5Li Q, Huang Y. An Auditory-Based Feature Extraction Algo- rithm for Robust Speaker Identification Under Mismatched Conditions [J]. IEEE Transactions on Audio Speech and Lan- guage Processing, 2011,19(6) : 1791-1801.
  • 6Li Qi. An auditory-based transfrom for audio signal processing [C]// 2009 IEEE Workshop on Applications of Signal Proces- sing to Audio and Acoustics. New Paltz, NY, United states, Oct. 2009 : 181-184.
  • 7Dimitriadis D,Maragos P,Potamianos A. On the Effects of Fil- terbank Design and Energy Computation on Robust Speech Recog-nition[J]. IEEE Transactions on Audio Speech and Lan- guage Processing, 2011,19(6) : 1504-1516.
  • 8Tu C-C,Juang C-F. Recurrent type-2 fuzzy neural network using Haar wavelet energy and entropy features for speech detection in noisy environments [J]. Expert Systems With Applications, 2012,39 (3): 2479-2488.
  • 9詹新明,黄南山,杨灿.语音识别技术研究进展[J].现代计算机,2008,14(9):43-45. 被引量:44
  • 10黄浩,朱杰,哈力旦.汉语语音识别中的区分性声调建模方法[J].计算机工程与应用,2009,45(11):178-182. 被引量:4

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部