期刊文献+

基于实数域扩散离散Chebyshev多项式的公钥加密算法 被引量:3

Public-key Encryption Based on Extending Discrete Chebyshev Polynomials' Definition Domain to Real Number
下载PDF
导出
摘要 将Chebyshev多项式与模运算相结合,对其定义在实数域上进行了扩展,经过理论验证和数据分析,总结出实数域多项式应用于公钥密码的一些性质。利用RSA公钥算法和ElGamal公钥算法的算法结构,提出基于有限域离散Chebyshev多项式的公钥密码算法。该算法结构类似于RSA算法,其安全性基于大数因式分解的难度或者与El-Gamal的离散对数难度相当,能够抵抗对于RSA的选择密文攻击,并且易于软件实现。 By combining Chebyshev polynomials with modulus compute,extending Chebyshev polynomials' definition domain to real number,some conclusions were drawn by theoretic verification and data analysis.Making use of the framework of the traditional public-key algorithm RSA and ElGamal,proposed a chaotic public-key encryption algorithm based on extending discrete Chebyshev polynomials' definition domain to Real number.Its security is based on the intractability of the integer factorization problem as RSA,and it is able to resist the chosen cipher-text attack against RSA and easy to be implemented.
作者 陈宇 韦鹏程
出处 《计算机科学》 CSCD 北大核心 2011年第10期121-122,165,共3页 Computer Science
基金 国家自然科学基金项目(60703035) 重庆市自然科学基金项目(2009BBB2227) 重庆市教委项目(KJ091501 KJ091502 KJ101501 KJ101502)资助
关键词 公钥加密 CHEBYSHEV多项式 实数域 混沌映射 Public-key encryption Chebyshev polynomials Real number domain Chaotic map
  • 相关文献

参考文献12

  • 1Diffie W, Hellman M E. New Directions in Cryptography[J]. IEEE Transactions on.Information Theory, 1976, IT-22 : 644-654.
  • 2Kocarev L. Chaos-based cryptography: A Brief Overview [J]. IEEE Circuits Mag. , 2001,1 (3) : 6-21.
  • 3Daehselt F, Schwarz W. Chaos and Cryptography [J].IEEE Trans. Circuits Sys. 1 : Fudam. Theory Appl. , 2001,48 (12) : 1498- 1509.
  • 4Schmitz R. Use of Chaotic Dynamical Systems in Cryptography[J]. J Franklin Inst. , 2001,338:429-441.
  • 5Koearev L. Public-key Encryption Based on Chevyshev Maps[C]//Proe IEEE Syrup. Circuits Syst. Vol 3,2003..28-31.
  • 6Bergamo P, D'Areo P, Santis A D, et al. Security of Pulbic-key Cryptosystems Based on Chebyshev Polynomials [ J ]. IEEE Tram on Circuits and System-1 : Regular Papers, 2005,52 ( 7 ) : 1382-1392.
  • 7G'erard M. Algebraic Method for Constructing on Way Trapdoor Function[D]. Notre Dram.. University of Notre Dame, 2003.
  • 8Yoshimur T, Kohda T. Jacobian Elliptic Chebyshey Rational Map[J]. Physical D, 2004,148(3/4) : 242-254.
  • 9刘亮,刘云,宁红宙.公钥体系中Chebyshev多项式的改进[J].北京交通大学学报,2005,29(5):56-59. 被引量:11
  • 10王大虎,魏学业,李庆九,柳艳红.基于Chebyshev多项式的公钥加密和密钥交换方案的改进[J].铁道学报,2006,28(5):95-98. 被引量:3

二级参考文献12

  • 1Kocarev L, Tasev Z. Public-Key Encryption Based on Chebyshev Maps[A]. Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, Volume 3[C]. New York. IEEE, 2003.28- 31.
  • 2Pina Bergamo, Paolo D' Arco, Alfredo De Santis, et al. Security of Public Key Cryptosysterns based on Chebyshev Polynomials[EB/OL]. http://citebase, eprints, org, 2004-8-25.
  • 3G' erard Maze. Algebraic Methods for Constructing oneway Trapdoor Functions[D]. Notre Dame: University of Notre Dame, 2003.
  • 4Yoshimura T, Kohda T. Resonance Properties of Cheby-shev Chaotic Sequences[A]. Proceedings of the 2004 International Symposium on Circuits and Systems Volume 4[C]. New York. IEEE, 2004.23-26.
  • 5卢铁成.信息加密技术[M].成都:四川科学技术出版社,1989.54-56.
  • 6Kocarev L,Tasev Z.Public-key encryption based on Chebyshev maps[J].IEEE Trans.on Circuits and Systems,2003,3:28-31.
  • 7Xiao D,Liao X,Tang X,Chuandong Li.Using Chebyshev chaotic map to construct infinite length hash chains[J].IEEE Trans.on Circuits and Systems,2004,4:11-12.
  • 8Xiao Di,Liao Xiao-feng,Wong K W.An efficient entire chaos-based scheme for deniable authentication[J].Chaos,Solitons and Fractals,2005,23 (4):1327-1331.
  • 9Kocarev L.Chaos-based cryptography:a brief overview[J].IEEE Trans.on Circuits and Systems,2001,1(3):6 -21.
  • 10Kocarev L,Sterjev M.Amato.P.RSA encryption algorithm based on torus automorphisms[J].IEEE Trans.on Circuits and Systems,2004,4:77-80.

共引文献10

同被引文献21

  • 1刘亮,刘云,宁红宙.公钥体系中Chebyshev多项式的改进[J].北京交通大学学报,2005,29(5):56-59. 被引量:11
  • 2梅其祥,唐小虎,何大可.抗选择密文攻击公钥密码体制的研究[J].计算机应用研究,2006,23(2):19-21. 被引量:3
  • 3KOCAREV L, TASEV Z. Public-key encryption based on Chebyshev maps[ C ]//Proc of IEEE Symposium on Circuits and System. 2003: 28-31.
  • 4BERGAMO P,ARCO P D, SANTIS A, et al. Security of public key cryptosystems based on Chebyshev polynomials [ J]. IEEE Trans on Circuits and Systems ,2005,52 ( 7 ) : 1382-1393.
  • 5.郝舒欣,赵耿,徐刚,等.一种新的基于Cheb)rshev多项式的身份认证方案[C]//Proc of Asia-Pacific Conference on Information Net-work and Digital Content Security. 2010.
  • 6KOEAREV L, MAKRADULI J, AMATO P. Public - key encryption based on chebyshev polynomials [J]. Circuits, Systems and Signal Processing ,2005,24 (5): 497 - 517.
  • 7BOSE R. Novel public key encryption technique based on multiple chaotic systems [ J ]. Physical review let- ters,2005,95 (9) :098702.
  • 8WANG Kai, PEI Wen-jiang, ZHOU Liu-hua, et al. Se- curity of public key encryption technique based on multiple chaotic system [ J ]. Physics letters A, 2006, 360(2) :259 -262.
  • 9XIAO Di, LIAO Xiao-feng, DENG Shao-jiang. A novel key agreement protocol based on chaotic maps[ J ]. In- formation Sciences, 2007,177 ( 4 ) : 1136 - 1142.
  • 10HAN Song. Security of a key agreement protocol based on chaotic maps [ J ]. Chaos, Solitons & Fractals,2008, 38(3) : 764 -768.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部