期刊文献+

基于记忆的SVM相关反馈算法 被引量:4

Relevance Feedback Algorithm Based on Memory Support Vector Machines
下载PDF
导出
摘要 支持向量机(SVM)方法并不假设样本的分布条件,它基于结构风险最小化原则,对小样本情况下的学习问题给出最优解,并且在样本趋于无穷时能保持良好的一致收敛性。在SVM的基础上提出的MSVM方法,通过记忆功能,用历次反馈的累积样本代替一次反馈样本,从而增加了学习样本数量,减小了查准率的振荡,提高了检索精度;同时为了减轻用户负担,提出了记忆性标注。实验证明,MSVM方法可以避免因训练样本集过小而出现的局部最小化的问题,能较为准确地分类图像库中的图像,同时有效地减轻了用户的负担。 Support vector machine(SVM) is based on the minimum of structure risk and used for small samples in machine learning.Memory support vector machine(MSVM) feedback is based on SVM and used cumulation samples replacing feedback samples by memory.It reduces the risk of recall vibration.MSVM feedback also proposes memory label which is used for lightening user's burden.MSVM feedback is proved its superiority by relevant experiments.
出处 《计算机科学》 CSCD 北大核心 2011年第10期256-258,共3页 Computer Science
关键词 支持向量机 反馈 记忆性标注 累积样本 Support vector machine Feedback Memory label Cumulation sample
  • 相关文献

参考文献6

  • 1Rui Y, Huang T S. Optimizing learning in image retrieval[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hihen Head Island: IEEE, 2000 : 236-243.
  • 2周建新,高科,李锦涛,张勇东,唐胜.图像检索中一种有效的SVM相关反馈算法[J].计算机辅助设计与图形学学报,2007,19(4):535-540. 被引量:10
  • 3Zhon X S, Huang T S. Relevance feedback in image retrieval: a comprehensive review[J]. Multimedia Systems Journal, 2003,8 (6) : 536-544.
  • 4余正涛,樊孝忠,郭剑毅.基于支持向量机的汉语问句分类[J].华南理工大学学报(自然科学版),2005,33(9):25-29. 被引量:20
  • 5Hong P, Tian Q, Huang T S. Incorporate support vector machine to content-based image retrieval with relevance feedback [C] // Proceedings of International Conference on Image Pro cessing. Vancouver: IEEE, 2000 : 750-753.
  • 6http://sipi, usc. edu/services/database/index, html.

二级参考文献27

  • 1郑实福.[D].哈尔滨:哈尔滨工业大学计算机科学与工程系,2002.
  • 2Li Xin, Roth Dan. Learning question classifier [A]. Proceedings of the 19th International Conference on Computational Linguistics [C]. Taipei: Morgan Kaufmann Publishers ,2002.556 - 562.
  • 3Li Xin, Roth Dan, Small Kevin. The role of semantic information in learning question classifiers [A]. Proceedings of the 1st International Joint Conference on Natural Language Processing [C]. Berlin: Spring-Verlag,2004.451 -458.
  • 4Zhang Dell, Lee Wee Sun. Question classification using support vector machines [A]. Proceedings of the 26th annual international ACM SIGIR Conference on Research and Development in Informaion Retrieval [C]. New York: ACM Press ,2003.26 - 32.
  • 5Hacioglu Kadri, Ward Wayne. Question classification using support vector machines and error correcting code[A]. Proceedings of HLT-NACCL 2003 [C]. Edmonton,2003.28 - 30.
  • 6Roth Dan, Cumby Chad, Li Xin, et al. Question-answering via enhanced understanding of questions [A]. Proceedings of the 1 1th Text Retrieval Conference [C]. Gait hersburg: NIST Special Publication, 2002. 667 - 676.
  • 7Hermjakob U. Parsing and question classification for question answering [A]. ACL-2001 Workshop on Open-Domain Question Answering [C]. Toulouse, 2001. 255 -262.
  • 8Taira Jun Suzuki, Sasaki Yutaka, Maeda Eisaku. Question classification using HDAG kernel [A]. ACL Workshop on Mulitilingual Summarization and Question Answering [C]. Sapporo,2003.61 - 68.
  • 9Hsu C W, Lin C J. A comparison of methodes for multiclass support vector machines [J]. IEEE Transacatuions on Netural networks,2002,13 (23) :415 - 425.
  • 10Chang Chih-chung, Lin Chih-jen. LIBSVM: A library for support vector machines [EB/OL]. http :∥www. csie. ntu.edu. tw/~ cjlin/libsvm,2001 - 05 - 15/2003 - 10 - 25.

共引文献27

同被引文献54

  • 1谭晓阳,孙正兴,张福炎.交互式图像检索中的相关反馈技术研究进展[J].南京大学学报(自然科学版),2004,40(5):639-648. 被引量:14
  • 2茹立云,马少平,路晶.基于平均检索精度的图像特征融合方法[J].计算机研究与发展,2005,42(9):1640-1646. 被引量:4
  • 3Smeulders A W M, Worring M, Santini S, et al. Content- based image retrieval at the end oI the early years [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 22(12): 2349-1380.
  • 4Chen Y X, Yu N H, Luo B, etal. iLike: integrating visual and textual features for vertical search [C] //Proceedings of International Conference on Multimedia. New York: ACM Press, 2010:221-230.
  • 5Zhang L, Chen L, Jing F, etal. EnjoyPhoto: a vertical image search engine for enjoying high-quality photos [C] // Proceedings of International Conference on Multimedia. New York: ACM Press, 2006:367-376.
  • 6Zeng Z Y, Yang W L. Design patent image retrieval based on shape and color features [J].Journal of Software, 2012, 7 (6) : 1179-1186.
  • 7Zhu L, Jin H, Zheng R, et al. Content-based design patent image retrieval using structured features and multiple feature fusion [C] //Proceedings of International Conference on Image and Graphics. Los Alamitos: IEEE Computer Society Press, 2011:969-974.
  • 8Stanchev P L, Jr Green D, Dimitrov B. High level color similarity retrieval [J]. International Journal Information Theories Application, 2003, 10(3): 363-369.
  • 9Vailaya A, Figueiredo M A T, Jain A K, et al. Image classification for content -based indexing [J]. IEEE Transactions on Image Process, 2001, 10(1): 117-130.
  • 10Simith J R, Li C S. Decoding image semantics using composite region templates [C] //Proceedings of IEEE Workshop on Content-Based Access of Image and Video Libraries. Los Alamitos: IEEE Computer Society Press, 1998; 9-13.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部