期刊文献+

基于GEP的模拟电路系统辨识技术 被引量:1

System Identification of Analog Circuits Based on Gene Expression Programming
下载PDF
导出
摘要 根据模拟电路系统的输入输出数据辨识,其数学模型是基于模型的装备快速测试方法中的关键技术之一.针对模拟电路系统的特点,设计了基于R-square的适应度函数、基于精英主义和轮盘赌算法的选择策略,采用部分映射、启发式变异算子,提出了一种基于基因表达式编程算法的模拟电路系统辨识方法并进行了系统实现.与MATLAB系统辨识工具箱对比,该方法不仅能够辨识电路系统的参数,而且还能辨识系统的结构.实验表明,通过设置适当的辨识精度,可以得到与理论模型一致的系统模型. Identifying the mathematical model of the analog circuit through the IO data is the key technology in the model- based fast equipment test method. According to the electrical characteristics of the analog circuit system, we designed R-square-based fitness function, and the selection strategy combined with elitism and roulette. The establishment method of analog circuit system identification based on gene expression prograrnming (GEP) was constituted with the partially mapped crossover operator, the heuristic mutation operator, and the sequence insertion operator. Compared with the MATLAB system identification toolbox, this method can identify not only the system parameter, but also the structure. If you set the suitable identifica- tion precision, we can get the theoretical system model via the SISO and MIMO tests.
出处 《测试技术学报》 2011年第5期400-405,共6页 Journal of Test and Measurement Technology
基金 部委级基金资助项目(914A170501090)
关键词 模拟电路 系统辨识 基因表达式编程(GEP) MATLAB系统辨识工具箱 analog circuit system identification gene expression programming (GEP) MATLAB SystemIdentification Toolbox
  • 相关文献

参考文献10

二级参考文献23

  • 1魏蛟龙,奚全生,陈恒,周渝.数字电路测试中的虚拟测试资源模型研究[J].华中科技大学学报(自然科学版),2005,33(7):8-10. 被引量:2
  • 2李康顺,李元香,汤铭端,周爱民,吴志健.遗传程序设计在统计建模中的应用[J].系统仿真学报,2005,17(7):1597-1600. 被引量:11
  • 3姜大志,吴志健,康立山,汤铭端,李康顺.基因表达式程序设计的GRCM方法[J].系统仿真学报,2006,18(6):1466-1468. 被引量:25
  • 4de Garis H.Evolvable hardware in principles and practice,communications of the association for computer machinery[J].CACM Journal, 1997(8).
  • 5Virtual Computer Corporation.Hardware object technology development system user's guide[EB/OL].(1998-03).http://www.vcc.com.
  • 6Ferreira C.Gene expression programming:a new adaptive algorithm for solving problems[J].Complex System( S0219-5259), 2001.
  • 7Cao H,Kang L,Chen Yu J.Evolutionary modeling of systems of ordinary differential equations with genetic programming[J].Genetic Programming and Evolvable Machines,2000,1:309-337.
  • 8Zuo Jie,Tang Chang-jie,Zhang Tian-qing. Mining predicate association rule by gene expression programming[C]//LNCS 2419:International Conference for Web Information Age 2002,WAIM02. Berlin : Springer-Verlag, 2002 : 92-103.
  • 9[1]Back T, Hoffmeister F, Schwefel H P. Application of evolutionary algorithms [R].Technical Report (SYS-2/92) of the Systems Analysis Research Group at the University of Dortmund, 1993.
  • 10[2]J F Barret. The use of functions in the analysis of nonlinear system[J]. J of Electronics Controls, 1963,15(6): 567-615.

共引文献13

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部