期刊文献+

一类近于凸函数子族的研究

A subclass of close-to-convex functions
下载PDF
导出
摘要 函数g(z)<G(z),当且仅当存在单位开圆盘E内的解析函数w(z)∈B0,即满足:w(0)=0,|w(z)|<1,使得g(z)=G(w(z))(z∈E),设P[A,B]={P(z)∶P(0)=1,P(z)在E内解析且满足P(z)<11++ABzz,-1≤B<A≤1},一个函数g(z)∈C[A,B]当且仅当(zgg′′((zz)))′<11++ABzz.函数族Kβ′[A,B]={f(z)∶f(0)=f′(0)-1=0,f(z)在E内解析,g(z)∈C[A,B],且Re{zgf′(z(z))}>β,-1≤B<A≤1},这是近于凸函数的一个子集,从而这些函数是单叶的.利用Janowski介绍的函数类P[A,B]的性质,参考Khalida InayatNoor研究Cβ*[A,B]的方法,研究这个函数族系数估计和半径问题,同时讨论Kβ′[A,B]与其他单叶函数子族的关系. A function g(z)〈G(z) if and only if it exited is a w(z)∈B0, where w(0)=0,|w(z)|〈1 , so that g(z)=G(w(z))(z∈E).Let P[A,B], -1≤B〈A≤1, denoted the class of functions p(z) : p(0)=1, analytic in the unit open disk E, such that p(z) was subordinate to 1+Az/1+Bz.A function g(z)was said to belong to the class C[A,B]if and only if (zg'(z))'/g'(z) was in P[A, B], KB[A, B]-the class of analytic functions f(z),where f(0)=f'(0)-1=0, regular in E satisfying the condition. Re {zf'(z)/g(z)}〉B, g∈C[A,B], -1≤B〈A≤1.These functions in this class were close-to-convex and hence univalent. With the help of the new Class P[-A,B]which introduced by Janowski, we studied its relationship with other functions. Co-efficient problem, distortion theorems, radius of convexity and other properties were solved.
作者 蔡振锋
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2011年第3期330-335,共6页 Journal of Hubei University:Natural Science
关键词 解析函数 近于凸函数 偏差定理 系数估计 凸半径 analytic function close-to-convex function distortion theorems coefficient estimate radius of convexity
  • 相关文献

参考文献10

  • 1Janowski J. Some extreme problems for certain families of analytic functions[J]. Ann Polon Math, 1973,28:297-326.
  • 2Seivaraj C. A subclass of close-to-convex functions[J]. Southeast Asian Bulletin of Mathematics, 2004,28:113-123.
  • 3Khalida Inayat Noor. Radius problems for a subclass of close-to-convex univalent functions[J]. Math Sci, 1992,15 (4) : 719-726.
  • 4Khalida Inayat Noor. THOMAS D K. On quasi-convex univalent functions[J]. Inter J Math & Math Sci, 1980(3): 255-266.
  • 5Khalida Inayat Noor. On a subclass of close-to-convex functions[J]. Comm Math Univ St Pauli, 1980,29:25-28.
  • 6Khalida Inayat Noor. On quasi-convex functions and related topics[J]. Inter J Math & Math Sci, 1987,10:241-258.
  • 7Robertson M S. On the theory of univalent functions[J]. Ann Math, 1936,37:374-408.
  • 8McCarty C P. Functions with real part greater than α[J]. Proc Amer Math Soc, 1972,35 : 211-216.
  • 9Goel R M. Functions starlike and convex of order α[J]. J London Math Soc, 1974,9: 128-130.
  • 10Parvatham R, Shanmugham T N. On analytic functions with reference to an integral operator[J]. Bull Austral Math Soc, 1983,28: 207-215.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部