摘要
函数g(z)<G(z),当且仅当存在单位开圆盘E内的解析函数w(z)∈B0,即满足:w(0)=0,|w(z)|<1,使得g(z)=G(w(z))(z∈E),设P[A,B]={P(z)∶P(0)=1,P(z)在E内解析且满足P(z)<11++ABzz,-1≤B<A≤1},一个函数g(z)∈C[A,B]当且仅当(zgg′′((zz)))′<11++ABzz.函数族Kβ′[A,B]={f(z)∶f(0)=f′(0)-1=0,f(z)在E内解析,g(z)∈C[A,B],且Re{zgf′(z(z))}>β,-1≤B<A≤1},这是近于凸函数的一个子集,从而这些函数是单叶的.利用Janowski介绍的函数类P[A,B]的性质,参考Khalida InayatNoor研究Cβ*[A,B]的方法,研究这个函数族系数估计和半径问题,同时讨论Kβ′[A,B]与其他单叶函数子族的关系.
A function g(z)〈G(z) if and only if it exited is a w(z)∈B0, where w(0)=0,|w(z)|〈1 , so that g(z)=G(w(z))(z∈E).Let P[A,B], -1≤B〈A≤1, denoted the class of functions p(z) : p(0)=1, analytic in the unit open disk E, such that p(z) was subordinate to 1+Az/1+Bz.A function g(z)was said to belong to the class C[A,B]if and only if (zg'(z))'/g'(z) was in P[A, B], KB[A, B]-the class of analytic functions f(z),where f(0)=f'(0)-1=0, regular in E satisfying the condition. Re {zf'(z)/g(z)}〉B, g∈C[A,B], -1≤B〈A≤1.These functions in this class were close-to-convex and hence univalent. With the help of the new Class P[-A,B]which introduced by Janowski, we studied its relationship with other functions. Co-efficient problem, distortion theorems, radius of convexity and other properties were solved.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2011年第3期330-335,共6页
Journal of Hubei University:Natural Science
关键词
解析函数
近于凸函数
偏差定理
系数估计
凸半径
analytic function
close-to-convex function
distortion theorems
coefficient estimate
radius of convexity