期刊文献+

利率服从Vasicek模型下的欧式期权定价 被引量:3

European Option Pricing under the Vasicek Model of the Interest Rate
下载PDF
导出
摘要 本文提供一种随机利率模型下的欧式期权定价的解析解。首先对不支付红利的零息票债券进行定价,提高其精度。然后利用股票、债券、期权进行投资组合得到欧式期权满足的随机微分方程,并通过变换得到它的显式解。最后通过数值试验验证其有效性,同时分析了随机利率对欧式看涨期权的影响。 Base on the stochastic nature of the rate,an explicit option pricing formula is obtained for European option.First of all,we derive the pricing formula for a riskless zero-coupon bond under the Vasicek mordel to enhance its accuracy,then we form a hedge portfolio consisting of the stock,the riskless bond,and the call to derive a stochastic differential equation,and solve its explicit solution.A numerical example is given for verifying the validity of the formula,and analyzing the effects of stochastic interest rate for European option pricing.
作者 王晶 张兴永
出处 《安庆师范学院学报(自然科学版)》 2011年第3期35-37,45,共4页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 期权定价 VASICEK模型 BLACK-SCHOLES定价模型 投资组合 option pricing vasicek model black-stoles pricing model portfolio
  • 相关文献

参考文献7

  • 1Black, F, Scholes, M. The pricing of options and corporate liabilities[ J ]. Journal of Political Economy, 1973, (81) : 633 -654.
  • 2R.C. Melton. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics , 1976, (3) :125 - 144.
  • 3R. Company, L. Jodar, J. -R. Pintos, M. -D. Bosello. Computing option pricing models under transaction costs [ J ]. Computers and Mathematics with Applications ,2010, (59) :651 -662.
  • 4James J. Kung , Lung- Sheng Lee. Option pricing under the Merton model of the short rate[ J]. Mathematics and Computers in Simulation , 2009, (80) :378 -386.
  • 5Vasicek Oldrich. An equilibrium characterization of term structure[ J ]. Journal of Financial Economics , 1977, (5) :177 -188.
  • 6Hull John C, Options, Futures and Other Derivatives ( Fifth Edition) [ M ]. Prentice Hall, 2003.
  • 7葛志新,徐华清,刘树德.非线性边界条件下的二次奇摄动问题[J].安庆师范学院学报(自然科学版),2008,14(3):1-3. 被引量:3

二级参考文献11

共引文献2

同被引文献21

  • 1BEHME A, LINDNER A. Multivariate generalized Ornstein-Uhlenbeck processes [J]. Stochastic Processes and TheirApplications,2012,122(4)-1487-1518. DOI: 10.1016/j.spa.2012.01.002.
  • 2BO Lijun, YANG Xuewei. Sequential maximum likelihood estimation for reflected generalized Ornstein-Uhlenbeckprocesses[J]. Statistics and Probability Letters,2012,82(7) : 1374-1382. DOI: 10.1016/j.spl.2012.03.018.
  • 3HADJIEV D I.The first passage problem for generalized Ornstein-Uhlenbeck processes with nonpositive jumps[M]//AZEMA J, YOR M. Seminaire de Probabilites XIX 1983/84 : Lecture Notes in Mathematics Volume 1123. Berlin:Springer,1985:80-90.DOI:10.1007/BFb0075840.
  • 4BORODIN A N, SALMINEN P. Handbook of brownian motion: facts and formulae [M]. 2nd ed. Basel. BirkhauserVerlag, 2002.
  • 5CARMONA P,PETIT F,YOR M.Exponential functionals of Levy processes[M]//BARNDORFF-NIELSEN O E,RESNICK S I, MIKOSCH T.Levy Processes: Theory and Applications.Boston,MA: Birkhauser Boston, 2001 : 41-55.DOI:10.1007/978-l-4612-0197-7_2.
  • 6BERTOIN J.On the Hilbert transform of the local times of a Levy process[J].Bull Sci Math, 1995,119(2) : 147-156.
  • 7LACHAL A. Quelques martingales associees a 1f integrale du processus dJ ornstein-uhlenbeck, application d 1? etudedespremiers instants d,atteinte [ J ]. Stochastics and Stochastic Reports,1996,58 ( 3/4 ): 285-302. DOI: 10.1080/ 17442509608834078.
  • 8BARNDORFF-NIELSEN O E, SHEPHARD N. Non-Gaussian Ornstein-Uhlenbeck-based models and some of theiruses in financial economics[J].J Roy Statist Soc:Ser B(Statist Methodol) ? 2001, 63(2) : 167-241. DOI: 10.1111/1467-9868.00282.
  • 9FASEN V. Statistical estimation of multivariate Ornstein-Uhlenbeck processes and applications to co~integration[J].Journal of Econometrics,2013,172(2) :325-337. DOI: 10.1016/j-jeconom.2012.08*019.
  • 10DUFFIE D,FILIPOVIC D? SCHACHERMAYER W. Affine processes and applications in finance [J]. Ann ApplProbab,2003,13(3):984-1053.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部