期刊文献+

矩阵乘积关于广义逆的交换律及广义交换律 被引量:1

Commutative law and generalized commutative law of matrix multiplication on generalized inverse
下载PDF
导出
摘要 定义了两个矩阵乘积关于广义逆的交换律与广义交换律的概念,利用矩阵秩方法及奇异值分解分别研究了两个矩阵乘积关于{1}-逆,{1,2}-逆,{1,3}-逆与{1,4}-逆的交换律与广义交换律成立的充要条件,并对其进行了比较. The concepts of the commutative laws and generalized commutative laws of matrix multiplication on generalized inverse were defined.Using the matrix rank method and SVD,necessary and sufficient conditions about the commutative laws and generalized commutative laws of matrix multiplication on{1}-inverse,{1,2}-inverse,{1,3}-inverse and{1,4}-inverse were established respectively,and these conditions were compared between themselves.
作者 李莹 高岩 郭文彬 LI Yin;GAO Yan;GUO Wen-bin(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China;College of Mathematics Science,Liaocheng University,Liaocheng 252059,China)
出处 《上海理工大学学报》 CAS 北大核心 2011年第4期379-383,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11171221)
关键词 {i j k}-逆 群逆 广义SCHUR补 秩方法 奇异值分解 交换律 {i,j,k}-inverse group inverse generalized Schur complement matrix rank method singular value decomposition commutative laws
  • 相关文献

参考文献4

  • 1BEN-ISRAEL A, GREVILE T N E. Generalized Inver- ses: Theory and Applications[M]. New York: John Wi- ley & Sons, 1974.
  • 2郭文彬,魏木生.奇异值分解及其在广义逆理论中的应用[M].北京:科学出版社,2008.
  • 3TIAN Y G. More on maximal and minimal ranks of Schur complements with applications [J]. Appl Math Comput, 2004,152: 675 - 692.
  • 4TIAN Y G. Upper and lower bounds for ranks of matrix expressions using generalized inverse[J]. Linear Alge- bra Appl, 2002,355 :187 - 214.

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部