期刊文献+

铝电解过程神经网络预测控制技术应用研究 被引量:3

Application Research on Neural Network Predictive Control Technology in Aluminum Electolysis Process
下载PDF
导出
摘要 铝电解是非线性、时变、大时滞过程,受强电场、强磁场、强热场交互干扰,其控制难度大,耗能高。因此,节约电能,提高电流效率,提高铝的产量和质量是铝电解控制系统研究的热点问题。文中在分析铝电解过程工作特性及存在问题的基础上,提出了小波神经网络预测控制方法,该方法将神经网络控制技术与预测技术有机结合,通过对反映氧化铝浓度的槽电阻参数跟踪,实时调整控制器的控制策略,控制氧化铝下料装置下料量,使氧化铝浓度控制在理想值范围,并对系统的硬件和软件进行了设计。实验结果表明:该方法的有效性,具有良好的控制控制性能和节电效果,对提高铝的产量和质量具有重要意义。 Aluminum electrolysis is a nonlinear,time-varying and a large time delay process,which interfered by the interaction of strong electric field,strong magnetic field and strong heat field.So,it is a high energy consumption process and the process control is very difficult.Therefore,the hot issue for the control system is how to save energy,improve the current efficiency,increase the yield and the quality of aluminum electrolysis.A wavelet neural network predictive control method was proposed which based on the analysis of characteristics and problems for the aluminum electrolysis process.The method combined the neural network control technology and forecasting techniques.By tracking the parameter of the cell resistance which reflects the alumina concentration,the controller regulates the control strategy on real-time to make the alumina concentration in an ideal range through controlling the alumina feeding quantity of the feeding device,and the system's hardware and software were designed.The experiment results show that the method has a good effective control performance and an energy-saving effect,and has an important significance of increasing the yield and quality of aluminum.
出处 《仪表技术与传感器》 CSCD 北大核心 2011年第8期91-93,共3页 Instrument Technique and Sensor
基金 辽宁省教育厅基金项目(20090987)
关键词 铝电解 神经网络 预测控制 氧化铝浓度 Aluminum electrolysis neural network predictive control alumina concentration1
  • 相关文献

参考文献8

二级参考文献19

共引文献20

同被引文献25

  • 1杨晓东,周东方,刘伟.节能电解槽技术的研发和进展[J].轻金属,2011(S1):165-169. 被引量:18
  • 2李劼,张文根,丁凤其,刘业翔.基于在线智能辨识的模糊专家控制方法及其应用[J].中南大学学报(自然科学版),2004,35(6):911-914. 被引量:5
  • 3胡包钢,王泳,杨双红,曲寒冰.如何增加人工神经元网络的透明度?[J].模式识别与人工智能,2007,20(1):72-84. 被引量:11
  • 4田应甫.大型预焙铝电解槽生产实践[M].长沙:中南工业大学出版社,2003.
  • 5Hachair X, Braive R, Lippi G L, et al. Identification of the stimulated-emission threshold in high- nanoscale lasers through phase-space reconstruction[ J]. Physical Review A, 2011,83(5) :1 -4.
  • 6Carl R, Manfred M. The false nearest neighbors algorithm: An overview[ J]. Computers & Chemical Engineering, 1997, 21:1149 - 1154.
  • 7Ismael M C, Enrique A A, Casillo M M A, et al. Parallel implementations of the false nearest neighbors method for distributed memory architectures[ J]. Concurrency and Com- putation : Practice and Experience,2011,23 ( 1 ) : 1 - 16.
  • 8Xu Yong, Zhang D, Song Fengxi, et al. A method for speed- ing up feature extraction based on KPCA [ J 1. Neurocompnt- ing,2007,70(4/5/6) : 1056 - 1061.
  • 9Cao L J, Chua K S, Chong W K. A comparison of PCA, KP- CA and ICA for dimensionality reduction in support vector machine [ J ]. Neurocomputing, 2003,55 : 32 1 - 336.
  • 10Pang Yanwei, Wang Lei, Yuan Yuan. Generalized KPCA by adaptive rules in feature space [ J ]. International Journal of Computer Mathematics, 2010,87 (5) : 956 - 968.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部