期刊文献+

基于关系矩阵融合的多媒体数据聚类 被引量:4

Multimedia Data Clustering Based on Correlation Matrix Fusion
下载PDF
导出
摘要 针对目前多媒体聚类研究中如何挖掘和利用不同数据集之间统计关系的问题,提出一种基于关系矩阵融合的聚类方法,首先,对图像和音频数据集中提取的特征矩阵进行相关性分析和子空间映射,进而在全局范围内对图像相似度、音频相似度以及图像和音频的相关度进行融合与优化,最后,采用基于相似度的循环迭代算法进行图像和音频聚类.对比实验从多个角度验证了文中方法的有效性,并能较好地应用于多媒体交叉检索. It is a hot issue to explore statistical correlation between different types of multimedia data, especially in the area of multimedia clustering. In this paper, we propose a multimedia clustering method based on correlation matrix fusion. Visual and auditory feature matrices are firstly initialized and simultaneously mapped into a subspace; Then we utilize correlation fusion strategy on image similarity matrix, audio similarity matrix and image-audio correlation matrix for global reinforcement and optimization; Thirdly, similarity-based clustering method is implemented for image and audio clustering in the subspace. Experiment results are encouraging and show that the performance of our approach is effective. Besides, an interesting experiment of image-audio crossretrieval validates the applicability of our approach.
出处 《计算机学报》 EI CSCD 北大核心 2011年第9期1705-1711,共7页 Chinese Journal of Computers
基金 国家自然科学基金(61003127 61070068) 湖北省教育厅科学技术研究项目(Q20091101) 武汉科技大学科学基金项目(2008TD04)资助~~
关键词 视听觉特征 关系矩阵 多媒体数据聚类 相关性融合 交叉检索 visual-auditory feature correlation matrix multimedia data clustering correlation fusion cross-retrieval
  • 相关文献

参考文献16

  • 1Lew M, Sebe N, Djeraba C, Jain R. Content-based multime- dia information retrieval: State-of-the art and challenges. ACM Transactions on Multimedia Computing, Communica tion and Applications, 2006, 2(1); 1 -19.
  • 2Bekkerman R, Jeon J. Multi modal clustering for multimedia collection//Proceedings of the CVPR. Minneapolis, USA, 2007:1 -8.
  • 3McLachlan G J, Basford K E. Mixture models: Inference and applications to clustering. Statistics: Textbooks and Mono graphs, New York, 1988.
  • 4Frey Brendan J, Dueck Delbert. Clustering by passing mes- sages between data point. Science, 2007, 315:972 -976.
  • 5Guo G D, Li S Z. Content based audio classification and re- trieval by support vector machines. IEEE Transactions on Neural Network, 2003, 14(1): 209-115.
  • 6张鸿,吴飞,庄越挺,陈建勋.一种基于内容相关性的跨媒体检索方法[J].计算机学报,2008,31(5):820-826. 被引量:34
  • 7Yang Yi, Xu Dong, Nie Feiping et al. Ranking with local re- gression and global alignment for cross-media retrieval//Pro- ceedings of the ACM Multimedia Conference. Beijing, China, 2009:175-184.
  • 8Wu Fei, Zhang Hong, Zhuang Yueting. Learning semantic correlations for cross-media retrieval//Proceedings of the In- ternational Conference on Image Processing. Atlanta, USA, 2006:1465-1468.
  • 9Yang Yi, Zhuang Yueting, Wu Fei, Pan Yunhe. Harmoni- zing hierarchical manifolds for multimedia document seman- tics understanding and cross-media retrieval. IEEE Transac- tions on Maltimedia, 2008, 10(3): 437-446.
  • 10McGurk Harry, MacDonald John. Hearing lips and seeing voices. Nature, 1976, 264:746-748.

二级参考文献15

  • 1Zhang Hong-Jiang, Zhong Di. Schema for visual featurebased image indexing Proceedings of the SPIE, Storage and Retrieval for Image and Video Database. San Diego, USA, 1995:36-46.
  • 2David R H, John S T. KCCA for different level precision in content-based image retrieval Proceedings of the 3rd International Workshop on Content-Based Multimedia Indexing. Rennes, France, 2003:51-56.
  • 3Snoek C G M, Worring M, Geusebroek J M. Semantic video search engine Proceedings of the TRECVID Workshop. Gaithersburg, USA, 2004:102-105.
  • 4Zhao Xue-Yan, Zhuang Yue-Ting, Wu Fei. Audio clip retrieval with fast relevance feedback based on constrained fuzzy clustering and stored Index table Proceedings of the Pacific-Rim Conference on Multimedia. Taiwan, China, 2002:237-244.
  • 5McGurk J M. Hearing lips and seeing voices. Nature, 1976, 264(5588) : 746-748.
  • 6Hardoon D R. A correlation approach for automatic image annotation Proceedings of the 2nd International Conference on Advanced Data Mining and Applications. Xi'an, China, 2006:681-692.
  • 7Wang Xin-Jing, Ma Wei-Ying, Xue Gui-Rong, Li Xing. Multi-model similarity propagation and its application for web image retrieval Proceedings of the ACM Multimedia Conference. New York, USA, 2004:944-951.
  • 8Ma Qiang, Akiyo Nadamoto, Katsumi Tanaka. Complementary information retrieval for cross-media news content. Proceedings of Information Systems, 2006, 31 (7): 659-678.
  • 9Adams W H, Iyengar G, Lin C Y. Semantic indexing of multimedia content using visual, audio and text cues. Eurasip Journal on Applied Signal Processing, 2003(2) : 170-185.
  • 10Joliffe I T. Principal Component Analysis. New York: Springer-Verlag, 1986:74-81.

共引文献33

同被引文献51

  • 1刘殷雷,刘玉葆,陈程.不确定性数据流上频繁项集挖掘的有效算法[J].计算机研究与发展,2011,48(S3):1-7. 被引量:14
  • 2王伟平,李建中,张冬冬,郭龙江.一种有效的挖掘数据流近似频繁项算法[J].软件学报,2007,18(4):884-892. 被引量:33
  • 3Low Y,Bickson D,Gonzalez J,et al.Distributed GraphLab:a framework for machine learning and data mining in the cloud[J].Proceedings of the VLDB Endowment,2012,5(8):716-727.
  • 4Alcal-Fdez J,Fernndez A,Luengo J,et al.KEEL data-mining software tool:data set repository,integration of algorithms and experimental analysis framework[J].Journal of Multiple-Valued Logic & Soft Computing,2011,12(17):204-209.
  • 5García S,Fernndez A,Luengo J,et al.Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining:experimental analysis of power[J].Information Sciences,2010,180(10):2044-2064.
  • 6Peng Yi,Zhang Yong,Tang Yu,et al.An incident information management framework based on data integration,data mining,and multi-criteria decision making[J].Decision Support Systems,2011,51(2):316-327.
  • 7Ngai E W T,Hu Yong,Wong Y H,et al.The application of data mining techniques in financial fraud detection:a classification framework and an academic review of literature[J].Decision Support Systems,2011,50(3):559-569.
  • 8Mohammed N,Chen Rui,Fung B,et al.Differentially private data release for data mining[C]//Proc of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2011:493-501.
  • 9Thelwall M,Wilkinson D,Uppal S.Data mining emotion in social network communication:gender differences in MySpace[J].Journal of the American Society for Information Science and Technology,2010,61(1):190-199.
  • 10Sun Yizhou,Han Jiawei,Yan Xifeng,et al.Mining knowledge from interconnected data:a heterogeneous information network analysis approach[J].Proceedings of the VLDB Endowment,2012,5(12):2022-2023.

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部